A series of ð-conjugated homopolymers of type poly(aryleneethynylene) (PAE), [sArsCtCs]n, (Ar ) 2,5-bis(butoxy)benzene (7a), 2,5-bis(octyloxy)benzene (7b), 2,5-bis(hexadecyloxy)benzene (7c), 3-butylthiophene (7d), and 3-hexadecylthiophene (7e)) have been prepared by further improvement of the palladium-catalyzed Extended One-Pot (EOP) synthetic protocol. With the use of dioxane as solvent and higher reaction temperature (110 °C), much higher polymerization degree, improved catalytic efficiency, and increased material purity were obtained. Numerical simulations have been performed in a series of different conjugated polymers in order to evaluate the role of the connection between aromatic rings in the maintaining of an effective electronic conjugation through the polymer chain. Experimentally, the conjugation properties have been investigated by means of photophysical measurements in liquid solution and in solid-state films. The electric transport properties have been characterized in view of applications to electronic devices.
Improvement of the Extended One-Pot (EOP) Procedure To Form Poly(aryleneethynylene)s and Investigation of Their Electrical and Optical Properties
RICCI, ANTONELLA;LO STERZO, CLAUDIO
2003-01-01
Abstract
A series of ð-conjugated homopolymers of type poly(aryleneethynylene) (PAE), [sArsCtCs]n, (Ar ) 2,5-bis(butoxy)benzene (7a), 2,5-bis(octyloxy)benzene (7b), 2,5-bis(hexadecyloxy)benzene (7c), 3-butylthiophene (7d), and 3-hexadecylthiophene (7e)) have been prepared by further improvement of the palladium-catalyzed Extended One-Pot (EOP) synthetic protocol. With the use of dioxane as solvent and higher reaction temperature (110 °C), much higher polymerization degree, improved catalytic efficiency, and increased material purity were obtained. Numerical simulations have been performed in a series of different conjugated polymers in order to evaluate the role of the connection between aromatic rings in the maintaining of an effective electronic conjugation through the polymer chain. Experimentally, the conjugation properties have been investigated by means of photophysical measurements in liquid solution and in solid-state films. The electric transport properties have been characterized in view of applications to electronic devices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.