High microbiological quality standards, food safety, and environmental sustainability represent crucial topics in food production chains. For this reason, fish industries, which import salted and seasoned fish products from supplier countries, i.e., Norway, Denmark, USA (Alaska State), etc., have tried to reduce the salt content of each carton during transportation (reducing carbon emissions and the weight of major quantities of transported fish). In the present study, 360 differently processed fish fillet samples, belonging to the species Gadus macrocephalus caught in FAO zone 67, were microbiologically and chemically screened. This study aimed to provide original data concerning the applicability of sustainable solutions investigating the combined effects of salt content reduction combined with new recyclable multilayer plastic film packaging (vacuum skin packaging with two different oxygen transmission rate values). The microbiological results showed no substantial changes comparing the two differently salted products, highlighting their high hygienic characteristics which were also observed in their chemical analysis. The shelf life evolutions (comparing the two different studied plastic films) highlighted that, after 35 days from HPP treatments, bacterial loads gained high values, over 6 log cfu/g. This study highlights that, compared to the currently used plastic films, the results of the new and sustainable multilayer plastic films show that they can provide safe food matrices in combination with HPP technologies. Therefore, this preliminary investigation brings closer attention to alternative and environmentally sustainable production systems with their designs based on the multidisciplinary approach of food production systems.

Shelf Life and Safety of Vacuum Packed HPP-Treated Soaked Cod Fillets: Effects of Salt Content and Multilayer Plastic Film

Ferri, Gianluigi;Lauteri, Carlotta;Scattolini, Mauro;Vergara, Alberto
2023-01-01

Abstract

High microbiological quality standards, food safety, and environmental sustainability represent crucial topics in food production chains. For this reason, fish industries, which import salted and seasoned fish products from supplier countries, i.e., Norway, Denmark, USA (Alaska State), etc., have tried to reduce the salt content of each carton during transportation (reducing carbon emissions and the weight of major quantities of transported fish). In the present study, 360 differently processed fish fillet samples, belonging to the species Gadus macrocephalus caught in FAO zone 67, were microbiologically and chemically screened. This study aimed to provide original data concerning the applicability of sustainable solutions investigating the combined effects of salt content reduction combined with new recyclable multilayer plastic film packaging (vacuum skin packaging with two different oxygen transmission rate values). The microbiological results showed no substantial changes comparing the two differently salted products, highlighting their high hygienic characteristics which were also observed in their chemical analysis. The shelf life evolutions (comparing the two different studied plastic films) highlighted that, after 35 days from HPP treatments, bacterial loads gained high values, over 6 log cfu/g. This study highlights that, compared to the currently used plastic films, the results of the new and sustainable multilayer plastic films show that they can provide safe food matrices in combination with HPP technologies. Therefore, this preliminary investigation brings closer attention to alternative and environmentally sustainable production systems with their designs based on the multidisciplinary approach of food production systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/127538
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact