This study aimed to investigate the effect on the chemical quality of whey and Ricotta obtained from ewes fed a red grape pomace (GP) dietary supplementation. The analyses were performed on whey, before and post Ricotta cheese-making, and in Ricotta after 1 (T1) and 5 (T5) d of ripening at 4°C. Moreover, fatty acid profile of whey before ricotta (WBR) cheese-making and Ricotta T1 of ripening and volatile profile of Ricotta T1 and T5 were investigated. The diet did not affect whey and Ricotta lipid content, conversely, significant variations were instead observed with regard to color. A lower amount of total phenolic compounds was found in WBR cheese-making, on the contrary, an opposite trend was highlighted in Ricotta T1 although no variations in antioxidant properties were detected. Moreover, GP modified fatty acid profile of whey and Ricotta but did not have any effect on protein profile of the main whey protein. The reduction of hexanal in Ricotta during the ripening suggest a better oxidative stability. The obtained results therefore suggested that the GP inclusion in the ewes diet, while modifying some chemical parameters, did not induce negative effects on the characteristics and quality of dairy by-products.
Evaluation of Chemical-Nutritional Characteristics of Whey and Ricotta Obtained by Ewes Fed Red Grape Pomace Dietary Supplementation
Bennato, Francesca;Ianni, Andrea;Grotta, Lisa;Martino, Giuseppe
2022-01-01
Abstract
This study aimed to investigate the effect on the chemical quality of whey and Ricotta obtained from ewes fed a red grape pomace (GP) dietary supplementation. The analyses were performed on whey, before and post Ricotta cheese-making, and in Ricotta after 1 (T1) and 5 (T5) d of ripening at 4°C. Moreover, fatty acid profile of whey before ricotta (WBR) cheese-making and Ricotta T1 of ripening and volatile profile of Ricotta T1 and T5 were investigated. The diet did not affect whey and Ricotta lipid content, conversely, significant variations were instead observed with regard to color. A lower amount of total phenolic compounds was found in WBR cheese-making, on the contrary, an opposite trend was highlighted in Ricotta T1 although no variations in antioxidant properties were detected. Moreover, GP modified fatty acid profile of whey and Ricotta but did not have any effect on protein profile of the main whey protein. The reduction of hexanal in Ricotta during the ripening suggest a better oxidative stability. The obtained results therefore suggested that the GP inclusion in the ewes diet, while modifying some chemical parameters, did not induce negative effects on the characteristics and quality of dairy by-products.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.