The involvement of both oxidative stress and hyperlipaemia in atherosclerosis development is well established. Oxidative burst is an innate immune response to infection, the latter being associated also with marked changes in lipid and lipoprotein metabolism, aimed to neutralize endotoxin toxic effects. On the other hand, lipid overload may increase lipopolysaccharide circulating levels and oxidative stress. Whilst these changes may be beneficial from the perspective of host defense, if they become chronic, they likely increase the risk of atherosclerosis. In particular, oxidation of lipoproteins, resulting from an imbalance of the pro- and antioxidant equilibrium, is involved in the pathologic process of atherosclerosis, changing cellular functions. Lipid oxidation, induced by leukocytes derived reactive oxygen species, can amplify foam cell formation through oxidized low density lipoproteins LDL (oxLDL) formation and uptake. The main enzymes, operating during oxidative burst, involved in LDL oxidation are NADPH oxidase and myeloperoxidase. In vitro studies have shown that oxLDL are able to induce many proatherogenic processes, including modulation of oxidative burst. OxLDL may also induce maturation of dendritic cells and regulate the shift from classical (M1) to alternative (M2) macrophage activation and from T helper 1 to T helper 2 response, suggesting that these could act as a bridge between innate and adaptative immunity, both involved in plaque development. Understanding the relationship between oxLDL and leukocyte oxidative burst helps to explain the involvement of innate immune responses in the early phases of atherosclerosis. The present review focuses on this interplay.

Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst

SERAFINI, MAURO
2012-01-01

Abstract

The involvement of both oxidative stress and hyperlipaemia in atherosclerosis development is well established. Oxidative burst is an innate immune response to infection, the latter being associated also with marked changes in lipid and lipoprotein metabolism, aimed to neutralize endotoxin toxic effects. On the other hand, lipid overload may increase lipopolysaccharide circulating levels and oxidative stress. Whilst these changes may be beneficial from the perspective of host defense, if they become chronic, they likely increase the risk of atherosclerosis. In particular, oxidation of lipoproteins, resulting from an imbalance of the pro- and antioxidant equilibrium, is involved in the pathologic process of atherosclerosis, changing cellular functions. Lipid oxidation, induced by leukocytes derived reactive oxygen species, can amplify foam cell formation through oxidized low density lipoproteins LDL (oxLDL) formation and uptake. The main enzymes, operating during oxidative burst, involved in LDL oxidation are NADPH oxidase and myeloperoxidase. In vitro studies have shown that oxLDL are able to induce many proatherogenic processes, including modulation of oxidative burst. OxLDL may also induce maturation of dendritic cells and regulate the shift from classical (M1) to alternative (M2) macrophage activation and from T helper 1 to T helper 2 response, suggesting that these could act as a bridge between innate and adaptative immunity, both involved in plaque development. Understanding the relationship between oxLDL and leukocyte oxidative burst helps to explain the involvement of innate immune responses in the early phases of atherosclerosis. The present review focuses on this interplay.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/95840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 177
  • ???jsp.display-item.citation.isi??? ND
social impact