A high-performance screen-printed electrode (SPE) based nanocomposite sensor integrating tungsten disulfide (WS2) flakes decorated with catechin-capped gold nanoparticles (AuNP-CT) and carbon black (CB) has been developed. The excellent antifouling properties of WS2 decorated with AuNP-CT into a high conductivity network of CB results in high selectivity, sensitivity, and reproducibility for the simultaneous determination of hydroxycinnamic acid (hCN) structural analogs: caffeic (CF), sinapic (SP), and p-coumaric acids (CM). Using differential pulse voltammetry (DPV), the target hCNs resulted in three well-resolved oxidation peaks at SPE-CB-WS2/AuNP-CT sensor. Excellent antifouling performance (RSD ip,a ≤ 3%, n = 15 for three analytes’ simultaneous measure) and low detection limits (CF 0.10 μmol L−1; SP, 0.40 μmol L−1; CM, 0.40 μmol L−1) are obtained despite the analyzed compounds having a high passivation tendency towards carbon-based sensors. The SPE-CB-WS2/AuNP-CT sensor was successfully applied to determine CF, SP, and CM in food samples with good precision (RSD ≤ 4%, n = 3) and recoveries (86–109%; RSD ≤ 5%, n = 3). The proposed sensor is the first example exploiting the simultaneous determination of these compounds in food samples. Given its excellent electrochemical performance, low cost, disposability, and ease of use, this SPE-CB-WS2/AuNP-CT nanocomposite sensor represents a powerful candidate for the realization of electrochemical devices for the determination of (bio)compounds with high passivation tendency. [Figure not available: see fulltext.]
Class-selective voltammetric determination of hydroxycinnamic acids structural analogs using a WS2/catechin-capped AuNPs/carbon black–based nanocomposite sensor
Della Pelle F.;Rojas D.;Silveri F.;Scroccarello A.;Compagnone D.
2020-01-01
Abstract
A high-performance screen-printed electrode (SPE) based nanocomposite sensor integrating tungsten disulfide (WS2) flakes decorated with catechin-capped gold nanoparticles (AuNP-CT) and carbon black (CB) has been developed. The excellent antifouling properties of WS2 decorated with AuNP-CT into a high conductivity network of CB results in high selectivity, sensitivity, and reproducibility for the simultaneous determination of hydroxycinnamic acid (hCN) structural analogs: caffeic (CF), sinapic (SP), and p-coumaric acids (CM). Using differential pulse voltammetry (DPV), the target hCNs resulted in three well-resolved oxidation peaks at SPE-CB-WS2/AuNP-CT sensor. Excellent antifouling performance (RSD ip,a ≤ 3%, n = 15 for three analytes’ simultaneous measure) and low detection limits (CF 0.10 μmol L−1; SP, 0.40 μmol L−1; CM, 0.40 μmol L−1) are obtained despite the analyzed compounds having a high passivation tendency towards carbon-based sensors. The SPE-CB-WS2/AuNP-CT sensor was successfully applied to determine CF, SP, and CM in food samples with good precision (RSD ≤ 4%, n = 3) and recoveries (86–109%; RSD ≤ 5%, n = 3). The proposed sensor is the first example exploiting the simultaneous determination of these compounds in food samples. Given its excellent electrochemical performance, low cost, disposability, and ease of use, this SPE-CB-WS2/AuNP-CT nanocomposite sensor represents a powerful candidate for the realization of electrochemical devices for the determination of (bio)compounds with high passivation tendency. [Figure not available: see fulltext.]File | Dimensione | Formato | |
---|---|---|---|
2020_hydroxycinnamic_Paper_AE.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
681.46 kB
Formato
Adobe PDF
|
681.46 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.