We report a miniaturized and disposable electrochemical sensor for phenolic compound detection. The sensor was constructed by modifying the working electrode surface of screen-printed electrode (SPE) with carbon black (CB) dispersion. This new probe showed higher sensitivity and better resistance to fouling than the bare SPE, displaying the suitability of CB as an excellent nanomodifier of SPE for phenolic compound detection. Catechol, gallic acid, caffeic acid, and tyrosol were detected by square wave voltammetry with a detection limit of 0.1 μM, 1 μM, 0.8 μM, and 2 μM, respectively. The sensor was able to selectively discriminate the mono-phenols and ortho-diphenols with rapid and easy measurement, paving the way to use a cost-effective device for quality control of foods and beverages containing phenolic compounds.
Carbon black as successful screen-printed electrode modifier for phenolic compound detection
DEL CARLO, MICHELE;COMPAGNONE, DARIO;
2015-01-01
Abstract
We report a miniaturized and disposable electrochemical sensor for phenolic compound detection. The sensor was constructed by modifying the working electrode surface of screen-printed electrode (SPE) with carbon black (CB) dispersion. This new probe showed higher sensitivity and better resistance to fouling than the bare SPE, displaying the suitability of CB as an excellent nanomodifier of SPE for phenolic compound detection. Catechol, gallic acid, caffeic acid, and tyrosol were detected by square wave voltammetry with a detection limit of 0.1 μM, 1 μM, 0.8 μM, and 2 μM, respectively. The sensor was able to selectively discriminate the mono-phenols and ortho-diphenols with rapid and easy measurement, paving the way to use a cost-effective device for quality control of foods and beverages containing phenolic compounds.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.