Accumulating evidence suggests that cyclooxygenase (COX)-2 is involved in the pathogenesis of human and canine osteosarcoma. The aim of this study was to investigate the expression of COX-2 in normal, reactive and neoplastic canine bone and the events downstream to COX-2 that lead to prostaglandin E2 (PGE2) production. COX-2, microsomal PGE2 synthase-1 (mPGES-1) and the PGE2 receptor (EP2) were assessed by immunohistochemistry in 12 samples of normal bone, 14 cases of fracture callus and 27 appendicular osteosarcomas. No immunoreactivity to COX-2, mPGES-1 or EP2 receptor was observed in normal bone. Fifty percent of reactive bone samples expressed COX-2 and 57% expressed mPGES-1 and EP2 receptor, although with weak labelling intensity. Ninety-three percent of osteosarcomas expressed COX-2, while mPGES-1 was expressed by 85% and EP2 receptor by 89% of the tumours. The data confirm that COX-2 is expressed at high level in osteosarcoma and support the use of COX-2 inhibitors to improve the response to chemotherapy. The possibility of blocking the EP2 or the selective inhibition of mPGES-1, rather than COX-2 activity, might decrease the incidence of adverse effects that occur due to the inhibition of prostanoids other than PGE2.
Immunohistochemical Expression of COX-2, mPGES and EP2 Receptor in Normal and Reactive Canine Bone and in Canine Osteosarcoma.
VIGNOLI, Massimo;
2012-01-01
Abstract
Accumulating evidence suggests that cyclooxygenase (COX)-2 is involved in the pathogenesis of human and canine osteosarcoma. The aim of this study was to investigate the expression of COX-2 in normal, reactive and neoplastic canine bone and the events downstream to COX-2 that lead to prostaglandin E2 (PGE2) production. COX-2, microsomal PGE2 synthase-1 (mPGES-1) and the PGE2 receptor (EP2) were assessed by immunohistochemistry in 12 samples of normal bone, 14 cases of fracture callus and 27 appendicular osteosarcomas. No immunoreactivity to COX-2, mPGES-1 or EP2 receptor was observed in normal bone. Fifty percent of reactive bone samples expressed COX-2 and 57% expressed mPGES-1 and EP2 receptor, although with weak labelling intensity. Ninety-three percent of osteosarcomas expressed COX-2, while mPGES-1 was expressed by 85% and EP2 receptor by 89% of the tumours. The data confirm that COX-2 is expressed at high level in osteosarcoma and support the use of COX-2 inhibitors to improve the response to chemotherapy. The possibility of blocking the EP2 or the selective inhibition of mPGES-1, rather than COX-2 activity, might decrease the incidence of adverse effects that occur due to the inhibition of prostanoids other than PGE2.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.