Human spermatozoa express type-1 cannabinoid receptor (CB1), whose activation by anandamide (AEA) affects motility and acrosome reaction (AR). In this study, we extended the characterization of the AEA-related endocannabinoid system in human spermatozoa, and we focused on the involvement of the AEA-binding vanilloid receptor (TRPV1) in their fertilizing ability. Protein expression was revealed for CB1 (similar to 56 kDa), TRPV1 (similar to 95 kDa), AEA-synthesizing phospholipase D (NAPE-PLD) (similar to 46 kDa), and AEA-hydrolyzing enzyme [fatty acid amide hydrolase (FAAH), similar to 66 kDa]. Both AEA-binding receptors (CB1 and TRPV1) exhibited a functional binding activity; enzymatic activity was demonstrated for NAPE-PLD, FAAH, and the purported endocannabinoid membrane transporter (EMT). Immunoreactivity for CB1, NAPE-PLD, and FAAH was localized in the postacrosomal region and in the midpiece, whereas for TRPV1, it was restricted to the postacrosomal region. Capsazepine (CPZ), a selective antagonist of TRPV1, inhibited progesterone (P)enhanced sperm/oocyte fusion, as evaluated by the hamster egg penetration test. This inhibition was due to a reduction of the P-induced AR rate above the spontaneous AR rate, which was instead increased. The sperm exposure to OMDM-1, a specific inhibitor of EMT, prevented the promoting effect of CPZ on spontaneous AR rate and restored the sperm responsiveness to P. No significant effects could be observed on sperm motility. In conclusion, this study provides unprecedented evidence that human spermatozoa exhibit a completely functional endocannabinoid system related to AEA and that the AEA-binding TRPV1 receptor could be involved in the sperm fertilizing ability.

Characterization of the Endocannabinoid System in Human Spermatozoa and Involvement of Transient Receptor Potential Vanilloid 1 Receptor in Their Fertilizing Ability

BATTISTA, Natalia;RAPINO, CINZIA;BARBONI, Barbara;
2009-01-01

Abstract

Human spermatozoa express type-1 cannabinoid receptor (CB1), whose activation by anandamide (AEA) affects motility and acrosome reaction (AR). In this study, we extended the characterization of the AEA-related endocannabinoid system in human spermatozoa, and we focused on the involvement of the AEA-binding vanilloid receptor (TRPV1) in their fertilizing ability. Protein expression was revealed for CB1 (similar to 56 kDa), TRPV1 (similar to 95 kDa), AEA-synthesizing phospholipase D (NAPE-PLD) (similar to 46 kDa), and AEA-hydrolyzing enzyme [fatty acid amide hydrolase (FAAH), similar to 66 kDa]. Both AEA-binding receptors (CB1 and TRPV1) exhibited a functional binding activity; enzymatic activity was demonstrated for NAPE-PLD, FAAH, and the purported endocannabinoid membrane transporter (EMT). Immunoreactivity for CB1, NAPE-PLD, and FAAH was localized in the postacrosomal region and in the midpiece, whereas for TRPV1, it was restricted to the postacrosomal region. Capsazepine (CPZ), a selective antagonist of TRPV1, inhibited progesterone (P)enhanced sperm/oocyte fusion, as evaluated by the hamster egg penetration test. This inhibition was due to a reduction of the P-induced AR rate above the spontaneous AR rate, which was instead increased. The sperm exposure to OMDM-1, a specific inhibitor of EMT, prevented the promoting effect of CPZ on spontaneous AR rate and restored the sperm responsiveness to P. No significant effects could be observed on sperm motility. In conclusion, this study provides unprecedented evidence that human spermatozoa exhibit a completely functional endocannabinoid system related to AEA and that the AEA-binding TRPV1 receptor could be involved in the sperm fertilizing ability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/7752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 112
  • ???jsp.display-item.citation.isi??? 100
social impact