The high-resolution crystal structure of an engineered human beta2-adrenergic receptor has recently been resolved, suggesting a molecular mechanism by which cholesterol may mediate receptor dimerization. Here, we present a critical examination of new structural and functional insights derived from unprecedented preliminary homology modeling of cannabinoid receptors, obtained using the crystal structure of beta2-adrenergic receptor as a template. The structural comparison between the two cannabinoid receptor subtypes and the beta2-adrenergic receptor may be of particular interest, by providing important clues for the elucidation of the structural determinants involved in cholesterol binding. In addition, the implications of G protein coupled receptor dimerization, as well as the role of cholesterol in this process, are briefly discussed.[...]
Lipid-mediated Dimerization of beta2-Adrenergic Receptor Reveals Important Clues for Cannabinoid Receptors
DAINESE, Enrico;ODDI, Sergio;MACCARRONE, Mauro
2008-01-01
Abstract
The high-resolution crystal structure of an engineered human beta2-adrenergic receptor has recently been resolved, suggesting a molecular mechanism by which cholesterol may mediate receptor dimerization. Here, we present a critical examination of new structural and functional insights derived from unprecedented preliminary homology modeling of cannabinoid receptors, obtained using the crystal structure of beta2-adrenergic receptor as a template. The structural comparison between the two cannabinoid receptor subtypes and the beta2-adrenergic receptor may be of particular interest, by providing important clues for the elucidation of the structural determinants involved in cholesterol binding. In addition, the implications of G protein coupled receptor dimerization, as well as the role of cholesterol in this process, are briefly discussed.[...]I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.