The potential toxicity of microplastics is a growing concern for the scientific community. The loggerhead sea turtle (Caretta caretta) is particularly inclined to accidently ingest plastic and microplastic due to its long-life cycle features. The possible transfer of microplastics from the female to the eggs should be investigated.The present study investigated the presence of microplastics in yolk and liver samples evaluating the number of melanomacrophages in the hepatic tissue as a possible biomarker of microplastics impact on the embryonic health status. The biometric parameters and liver histological analysis of 27 and 48 embryos (from two different nests respectively) at the 30 stage of development were analyzed. Raman Microspectroscopy was performed to identify the microplastics after alkaline digestion (10% KOH) of yolk and portion of liver from 5 embryos at the 30 developmental stage per nest. Microplastics were found in yolk and liver of loggerhead sea turtles at late embryonic stage for the first time. All microplastics were smaller than 5 mu m and were made of polymers and colors suggesting their diverse origins. A total number of 21 microplastics, with dimensions lower than 5 mu m, were found between the two nests (11 and 10 microplastics respectively). Only two shape categories were identified: spheres and fragments. The most frequent polymers observed were polyethylene, polyvinyl chloride and acrylonitrile butadiene styrene (31.5%, 21.1% and 15.8% respectively). Despite the eggs showing a higher number of microplastics in yolk samples than liver (15 and 6 microplastics in yolk and liver respectively), a positive correlation was observed only between the number of melanomacrophages (r = 0.863 p < 0.001) and microplastics in the liver. This result may suggest that microplastics could exert some effects on the hepatic tissues. Future studies should investigate this aspect and the possible relation between microplastics and other stress biomarkers.

Microplastics evidence in yolk and liver of loggerhead sea turtles (Caretta caretta), a pilot study

Notarstefano, Valentina;
2023-01-01

Abstract

The potential toxicity of microplastics is a growing concern for the scientific community. The loggerhead sea turtle (Caretta caretta) is particularly inclined to accidently ingest plastic and microplastic due to its long-life cycle features. The possible transfer of microplastics from the female to the eggs should be investigated.The present study investigated the presence of microplastics in yolk and liver samples evaluating the number of melanomacrophages in the hepatic tissue as a possible biomarker of microplastics impact on the embryonic health status. The biometric parameters and liver histological analysis of 27 and 48 embryos (from two different nests respectively) at the 30 stage of development were analyzed. Raman Microspectroscopy was performed to identify the microplastics after alkaline digestion (10% KOH) of yolk and portion of liver from 5 embryos at the 30 developmental stage per nest. Microplastics were found in yolk and liver of loggerhead sea turtles at late embryonic stage for the first time. All microplastics were smaller than 5 mu m and were made of polymers and colors suggesting their diverse origins. A total number of 21 microplastics, with dimensions lower than 5 mu m, were found between the two nests (11 and 10 microplastics respectively). Only two shape categories were identified: spheres and fragments. The most frequent polymers observed were polyethylene, polyvinyl chloride and acrylonitrile butadiene styrene (31.5%, 21.1% and 15.8% respectively). Despite the eggs showing a higher number of microplastics in yolk samples than liver (15 and 6 microplastics in yolk and liver respectively), a positive correlation was observed only between the number of melanomacrophages (r = 0.863 p < 0.001) and microplastics in the liver. This result may suggest that microplastics could exert some effects on the hepatic tissues. Future studies should investigate this aspect and the possible relation between microplastics and other stress biomarkers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/154501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact