In this paper we provide a preliminary investigation of subclasses of bounded posets with antitone involution which are "pastings" of their maximal Kleene sub-lattices. Specifically, we introduce super-paraorthomodular lattices, namely paraothomodular lattices whose order determines, and it is fully determined by, the order of their maximal Kleene sub-algebras. It will turn out that the (spectral) paraorthomodular lattice of effects over a separable Hilbert space can be considered as a prominent example of such. Therefore, it arguably provides an algebraic/order theoretical rendering of complementarity phenomena between unsharp observables. A number of examples, properties and characterization theorems for structures we deal with will be outlined. For example, we prove a forbidden configuration theorem and we investigate the notion of commutativity for modular pseudo-Kleene lattices, examples of which are (spectral) paraorthomodular lattices of effects over finite-dimensional Hilbert spaces.

On Contextuality and Unsharp Quantum Logic

Fazio, Davide
;
Mascella, Raffaele
2024-01-01

Abstract

In this paper we provide a preliminary investigation of subclasses of bounded posets with antitone involution which are "pastings" of their maximal Kleene sub-lattices. Specifically, we introduce super-paraorthomodular lattices, namely paraothomodular lattices whose order determines, and it is fully determined by, the order of their maximal Kleene sub-algebras. It will turn out that the (spectral) paraorthomodular lattice of effects over a separable Hilbert space can be considered as a prominent example of such. Therefore, it arguably provides an algebraic/order theoretical rendering of complementarity phenomena between unsharp observables. A number of examples, properties and characterization theorems for structures we deal with will be outlined. For example, we prove a forbidden configuration theorem and we investigate the notion of commutativity for modular pseudo-Kleene lattices, examples of which are (spectral) paraorthomodular lattices of effects over finite-dimensional Hilbert spaces.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/150880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact