Feline chronic enteropathies (FCE), include food-responsive-enteropathy (FRE), inflammatory bowel disease (IBD), and low-grade intestinal T-cell lymphoma (LGITL), and are common causes of chronic gastrointestinal signs in cats. Distinguishing between different subgroups of FCE can be challenging due to the frequent overlap of anamnestic, clinical, and laboratory data. While dysregulation in lipid metabolism has been reported in humans and dogs with chronic IBD, similar changes in cats are not yet completely understood. Assessing the fatty acid (FA) profile of red blood cell (RBC) membranes offers a valuable method for evaluating the quantity and quality of structural and functional molecular components in the membranes. Therefore, this study aimed to examine the FA composition of RBC membranes in FCE in comparison to healthy cats (HC). Gas-chromatography was used to quantitatively analyze a cluster of 11 FA, and based on these results, parameters of lipid homeostasis and enzyme activity indexes were calculated. A total of 41 FCE cats (17 FRE, 15 IBD, 9 LGITL) and 43 HC were enrolled. In FCE cats, the values of docosapentaenoic acid (p = 0.0002) and docosahexaenoic acid (p = 0.0246), were significantly higher, resulting in an overall increase in omega-3 polyunsaturated fatty acids (PUFA) (p = 0.006), and that of linoleic acid (p = 0.0026) was significantly lower. Additionally, FCE cats exhibited an increased PUFA balance (p = 0.0019) and Delta 6-desaturase index (p = 0.0151), along with a decreased omega-6/omega-3 ratio (p = 0.0019). No differences were observed among cats affected by FRE, IBD and LGITL. Like humans and dogs, the results of this study indicate that FCE cats also display changes in their FA lipid profile at the level of the RBC membrane. The non-invasive analysis of RBC membrane shows promise as a potential tool for gaining a better understanding of lipid imbalances in this disease.
Evaluation of the fatty acid-based erythrocyte membrane lipidome in cats with food responsive enteropathy, inflammatory bowel disease and low-grade intestinal T-cell lymphoma
Crisi, Paolo Emidio
;Giordano, Maria Veronica;Luciani, Alessia;Gramenzi, Alessandro;Prasinou, Paraskevi;Rinaldi, Valentina;Ferreri, Carla;Boari, Andrea
2024-01-01
Abstract
Feline chronic enteropathies (FCE), include food-responsive-enteropathy (FRE), inflammatory bowel disease (IBD), and low-grade intestinal T-cell lymphoma (LGITL), and are common causes of chronic gastrointestinal signs in cats. Distinguishing between different subgroups of FCE can be challenging due to the frequent overlap of anamnestic, clinical, and laboratory data. While dysregulation in lipid metabolism has been reported in humans and dogs with chronic IBD, similar changes in cats are not yet completely understood. Assessing the fatty acid (FA) profile of red blood cell (RBC) membranes offers a valuable method for evaluating the quantity and quality of structural and functional molecular components in the membranes. Therefore, this study aimed to examine the FA composition of RBC membranes in FCE in comparison to healthy cats (HC). Gas-chromatography was used to quantitatively analyze a cluster of 11 FA, and based on these results, parameters of lipid homeostasis and enzyme activity indexes were calculated. A total of 41 FCE cats (17 FRE, 15 IBD, 9 LGITL) and 43 HC were enrolled. In FCE cats, the values of docosapentaenoic acid (p = 0.0002) and docosahexaenoic acid (p = 0.0246), were significantly higher, resulting in an overall increase in omega-3 polyunsaturated fatty acids (PUFA) (p = 0.006), and that of linoleic acid (p = 0.0026) was significantly lower. Additionally, FCE cats exhibited an increased PUFA balance (p = 0.0019) and Delta 6-desaturase index (p = 0.0151), along with a decreased omega-6/omega-3 ratio (p = 0.0019). No differences were observed among cats affected by FRE, IBD and LGITL. Like humans and dogs, the results of this study indicate that FCE cats also display changes in their FA lipid profile at the level of the RBC membrane. The non-invasive analysis of RBC membrane shows promise as a potential tool for gaining a better understanding of lipid imbalances in this disease.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.