: Malignant mesothelioma (MM) is a very aggressive neoplasia with a short life expectancy and limited therapeutic options. Thus, the identification of novel molecular targets is a matter of great urgency. Kelch-like (KLHL) proteins play an important role in a number of physiological and pathological cell-regulatory processes. Among this family, the function of KLHL14 is still very poorly characterized. KLHL14 was originally identified as a gene involved in regulating the epithelial-mesenchymal transition (EMT) process. Here, we demonstrate that KLHL14 not only prevents EMT but also plays an anti-oncogenic role in MM. Indeed, KLHL14 depletion enhanced proliferation, motility, invasion and colony formation in MM cells. Importantly, we also demonstrated that KLHL14 mechanism of action is dependent on Transforming Growth Factor β (TGF-β). In fact, TGF-β promotes de novo synthesis, increases protein stability and induces nuclear-cytoplasmic shuttling of KLHL14. Collectively, this research is an important step further to decipher KLHLs mechanism of action and further contributes to the understanding of the molecular mechanisms regulating MM.

Characterization of KLHL14 anti-oncogenic action in malignant mesothelioma

Canciello, Angelo
;
Barboni, Barbara;
2024-01-01

Abstract

: Malignant mesothelioma (MM) is a very aggressive neoplasia with a short life expectancy and limited therapeutic options. Thus, the identification of novel molecular targets is a matter of great urgency. Kelch-like (KLHL) proteins play an important role in a number of physiological and pathological cell-regulatory processes. Among this family, the function of KLHL14 is still very poorly characterized. KLHL14 was originally identified as a gene involved in regulating the epithelial-mesenchymal transition (EMT) process. Here, we demonstrate that KLHL14 not only prevents EMT but also plays an anti-oncogenic role in MM. Indeed, KLHL14 depletion enhanced proliferation, motility, invasion and colony formation in MM cells. Importantly, we also demonstrated that KLHL14 mechanism of action is dependent on Transforming Growth Factor β (TGF-β). In fact, TGF-β promotes de novo synthesis, increases protein stability and induces nuclear-cytoplasmic shuttling of KLHL14. Collectively, this research is an important step further to decipher KLHLs mechanism of action and further contributes to the understanding of the molecular mechanisms regulating MM.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/145260
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact