Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by quantum structures arising from the logico-algebraic approach to quantum mechanics. The aim of the present work is starting a systematic inquiry into paraorthomodular posets theory both from algebraic and order-theoretic perspectives. On the one hand, we show that paraorthomodular posets are amenable of an algebraic treatment by means of a smooth representation in terms of bounded directoids with antitone involution. On the other, we investigate their order-theoretical features in terms of forbidden configurations. Moreover, sufficient and necessary conditions characterizing bounded posets with an antitone involution whose Dedekind-MacNeille completion is paraorthomodular are provided.
Algebraic Properties of Paraorthomodular Posets
Fazio, D;
2022-01-01
Abstract
Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by quantum structures arising from the logico-algebraic approach to quantum mechanics. The aim of the present work is starting a systematic inquiry into paraorthomodular posets theory both from algebraic and order-theoretic perspectives. On the one hand, we show that paraorthomodular posets are amenable of an algebraic treatment by means of a smooth representation in terms of bounded directoids with antitone involution. On the other, we investigate their order-theoretical features in terms of forbidden configurations. Moreover, sufficient and necessary conditions characterizing bounded posets with an antitone involution whose Dedekind-MacNeille completion is paraorthomodular are provided.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.