Nowadays, microplastics (MPs) are considered as contaminants of emerging concern, since they are ubiquitously present in the majority of ecosystems. This research focuses on the chemical characterization of MPs in four Italian groundwater bodies, two karst caves, one in Piedmont and the other in Tuscany, and two saturated alluvial aquifers in Florence (Tuscany). Atmospheric depositions, infiltrations through soil and anthropic contribution, especially in touristic areas, can cause MPs penetration into groundwater bodies, posing a risk not only to groundwaters’ quality but also to biodiversity conservation in these sensitive ecosystems. A single water sample was collected from each sampling site, and, if necessary, an oxidative digestion step was performed to remove any organic matter that could interfere with subsequent analysis. Vacuum filtration was employed on each sample, followed by a preliminary observation using a stereomicroscope to assess colors and shapes. The chemical characterization was done by 2D imaging Fourier Transform Infrared Spectroscopy (FTIR). Every polymer found in each site was classified by shape, color and composition. This study was supported by National Recovery and Resilience Plan (PNRR), Mission 4, Component 2 “From Research to Enterprise”, funded by the European Union NextGenerationEU, CUP B83C22004820002.

Characterization of (micro-)plastics in groundwater bodies : insights from Italian aquifers

Tabilio, Agostina;
2023-01-01

Abstract

Nowadays, microplastics (MPs) are considered as contaminants of emerging concern, since they are ubiquitously present in the majority of ecosystems. This research focuses on the chemical characterization of MPs in four Italian groundwater bodies, two karst caves, one in Piedmont and the other in Tuscany, and two saturated alluvial aquifers in Florence (Tuscany). Atmospheric depositions, infiltrations through soil and anthropic contribution, especially in touristic areas, can cause MPs penetration into groundwater bodies, posing a risk not only to groundwaters’ quality but also to biodiversity conservation in these sensitive ecosystems. A single water sample was collected from each sampling site, and, if necessary, an oxidative digestion step was performed to remove any organic matter that could interfere with subsequent analysis. Vacuum filtration was employed on each sample, followed by a preliminary observation using a stereomicroscope to assess colors and shapes. The chemical characterization was done by 2D imaging Fourier Transform Infrared Spectroscopy (FTIR). Every polymer found in each site was classified by shape, color and composition. This study was supported by National Recovery and Resilience Plan (PNRR), Mission 4, Component 2 “From Research to Enterprise”, funded by the European Union NextGenerationEU, CUP B83C22004820002.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/138100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact