Study question How to improve in-vitro Folliculogenesis (ivF) protocols to address the enlarged demand of fertility preservation? Summary answer Tissue engineering-based approach opens new frontiers for ivF improving 3D-technologies addressed to support immature-ovarian-follicle-growth to obtain an increased number of competent oocytes enrolled in Assisted-Reproductive-Technology. What is known already ivF is a promising Assisted-Reproductive-Technology (ART) for preserving and restoring fertility. This technology potentially reproduces the early stages of folliculogenesis and oogenesis in-vitro allowing to move a large amount of oocyte on individual basis towards the validated protocol of in-vitro maturation/in-vitro fertilization (IVM/IVF). The current availability of biocompatible-supporting materials offers the challenging opportunity to mimic the native organ stroma in order to better reproduce the 3D environmental conditions leading to synergic follicles-oocyte development in-vitro with the aim to improve the performance of ivF in translational large sized mammal models. Study design, size, duration The present research aimed to compare preantral (PA) follicles culture on two different typologies of scaffolds fabricated using PCL(poly(epsilon caprolactone)), respectively made with patterned and randomly aligned fibers (PCL-Patterned/PCL-Randomic) with a standardized-single-follicle scaffold-free-method (3D-oil), widely validated on ovine model (Cecconi et al., 2004). The culture outcomes are compared analyzing follicle/oocyte growth, percentage of antrum differentiation and the incidence of meiotic competence, by exposing ivF growing oocytes to IVM protocol. Participants/materials, setting, methods PA follicles (mean size diameter: 250±4μm), mechanically isolated from slaughterhoused lamb ovaries, were individually cultured on electrospun PCL scaffolds (patterned vs randomic) or using the 3D-oil method. ivF were cultured alphaMEM-Fetal Bovine Serum free medium (5% Knockout Serum Replacement) supplemented with 4 IU/mL of equine Chorionic Gonadotropin (Di Berardino et al., 2021). At the end of ivF (14-days) the fully-grown oocytes isolated from early-antral follicles were tested on IVM. Main results and the role of chance PCL-Patterned electrospun scaffolds were able to strongly support a synergic oocyte and follicular growth. The 3D culture on Patterned electrospun scaffold supported the highest viability of follicles (87.5% vs 63% under 3D-oil conditions). On the contrary, the highest incidence of degenerated follicles was observed in cultures performed using PCL-Randomic materials (55 vs 37% vs 12.5% for PCL-Randomic vs 3D-oil vs PCL-Patterned, respectively; p <0.0004). The greatest follicle diameter increment (74.7±1 vs 70±0.4 vs 60.9±2%, for PCL-Patterned vs 3D-oil vs PCL-Randomic, respectively p <0.0007) and rate of antrum differentiation (87.5% vs 45% and vs 63%, for PCL-Patterned vs 3D-oil vs PCL-Randomic, for both p <0.0001) were observed in PA ovine follicles cultured on PCL-Patterned scaffolds. Furthermore, PCL-Patterned electrospun scaffolds supported a complete functional development of the oocyte compartment. More in detail, the majority of fully grown oocytes isolated from early- antral follicles grown on PCL-Patterned materials reached the metaphase-II stage (MII 80%) at the end of IVM in comparison to the significant lower percentage in 3D-oil (MII 68%, p =0.04) and PCL-Randomic (MII 18%, p <0.0001) protocols, respectively. Limitations, reasons for caution - Wider implications of the findings Tissue engineering scaffold-based approach represents a valid strategy generating a multi-organ in-vitro system, where different compartments may cooperate generating the complexity of paracrine-mechanism controlling early-follicles outcomes. Scaffold topology is essential to control early-follicles development. Indeed, exclusively PCL-Patterned can preserve long-term follicle 3D-microarchitecture supporting in-vitro oogenesis up to a complete meiotic-competence-acquisition. Trial registration number not applicable

Impact of electrospun scaffold topology on the performance of in-vitro Folliculogenesis applied to preantral ovine follicles

Di Berardino C;Peserico A;Capacchietti G;Russo V;Bernabo Nicola;Tosi U;Barboni B.
2022-01-01

Abstract

Study question How to improve in-vitro Folliculogenesis (ivF) protocols to address the enlarged demand of fertility preservation? Summary answer Tissue engineering-based approach opens new frontiers for ivF improving 3D-technologies addressed to support immature-ovarian-follicle-growth to obtain an increased number of competent oocytes enrolled in Assisted-Reproductive-Technology. What is known already ivF is a promising Assisted-Reproductive-Technology (ART) for preserving and restoring fertility. This technology potentially reproduces the early stages of folliculogenesis and oogenesis in-vitro allowing to move a large amount of oocyte on individual basis towards the validated protocol of in-vitro maturation/in-vitro fertilization (IVM/IVF). The current availability of biocompatible-supporting materials offers the challenging opportunity to mimic the native organ stroma in order to better reproduce the 3D environmental conditions leading to synergic follicles-oocyte development in-vitro with the aim to improve the performance of ivF in translational large sized mammal models. Study design, size, duration The present research aimed to compare preantral (PA) follicles culture on two different typologies of scaffolds fabricated using PCL(poly(epsilon caprolactone)), respectively made with patterned and randomly aligned fibers (PCL-Patterned/PCL-Randomic) with a standardized-single-follicle scaffold-free-method (3D-oil), widely validated on ovine model (Cecconi et al., 2004). The culture outcomes are compared analyzing follicle/oocyte growth, percentage of antrum differentiation and the incidence of meiotic competence, by exposing ivF growing oocytes to IVM protocol. Participants/materials, setting, methods PA follicles (mean size diameter: 250±4μm), mechanically isolated from slaughterhoused lamb ovaries, were individually cultured on electrospun PCL scaffolds (patterned vs randomic) or using the 3D-oil method. ivF were cultured alphaMEM-Fetal Bovine Serum free medium (5% Knockout Serum Replacement) supplemented with 4 IU/mL of equine Chorionic Gonadotropin (Di Berardino et al., 2021). At the end of ivF (14-days) the fully-grown oocytes isolated from early-antral follicles were tested on IVM. Main results and the role of chance PCL-Patterned electrospun scaffolds were able to strongly support a synergic oocyte and follicular growth. The 3D culture on Patterned electrospun scaffold supported the highest viability of follicles (87.5% vs 63% under 3D-oil conditions). On the contrary, the highest incidence of degenerated follicles was observed in cultures performed using PCL-Randomic materials (55 vs 37% vs 12.5% for PCL-Randomic vs 3D-oil vs PCL-Patterned, respectively; p <0.0004). The greatest follicle diameter increment (74.7±1 vs 70±0.4 vs 60.9±2%, for PCL-Patterned vs 3D-oil vs PCL-Randomic, respectively p <0.0007) and rate of antrum differentiation (87.5% vs 45% and vs 63%, for PCL-Patterned vs 3D-oil vs PCL-Randomic, for both p <0.0001) were observed in PA ovine follicles cultured on PCL-Patterned scaffolds. Furthermore, PCL-Patterned electrospun scaffolds supported a complete functional development of the oocyte compartment. More in detail, the majority of fully grown oocytes isolated from early- antral follicles grown on PCL-Patterned materials reached the metaphase-II stage (MII 80%) at the end of IVM in comparison to the significant lower percentage in 3D-oil (MII 68%, p =0.04) and PCL-Randomic (MII 18%, p <0.0001) protocols, respectively. Limitations, reasons for caution - Wider implications of the findings Tissue engineering scaffold-based approach represents a valid strategy generating a multi-organ in-vitro system, where different compartments may cooperate generating the complexity of paracrine-mechanism controlling early-follicles outcomes. Scaffold topology is essential to control early-follicles development. Indeed, exclusively PCL-Patterned can preserve long-term follicle 3D-microarchitecture supporting in-vitro oogenesis up to a complete meiotic-competence-acquisition. Trial registration number not applicable
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/122658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact