While a large set of in vitro models are available to study the effects of specific food ingredients (e.g. pre- and probiotics) on the human gut microbiome, the availability of such models for companion animals is limited. Since improving gut health of such animals is an emerging research field, the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME™) was recently developed and validated with in vivo data. The current study presents a further improvement of this model by using an alternative method for feed preparation, i.e. by administering digestive enzymes to mimic upper gastro-intestinal digestion followed by a dialysis approach to mimic small intestinal absorption. As opposed to the previously implemented method, this resulted in a more optimal simulation of protein digestion and absorption. Further, upon entrance in the colon, increased production of the health-promoting butyrate and lower levels of Lactobacillus spp. and Bifidobacterium spp. were observed, which corresponded better with obtained in vivo data. A second model improvement consisted of the implementation of a mucosal environment to not only simulate luminal but also mucosal microbiota. In consistency with the human model for which this technology was previously validated, it was found that for all canine microbiota mucin beads were enriched with members of the Lachnospiraceae (~ Clostridium cluster XIVa), a family containing multiple well-known butyrate producers. The SCIME™ was thus upgraded to a so-called Mucosal SCIME™ (M-SCIME™). In conclusion, the current study presents improvements of the SCIME™, further increasing the relevance of obtained data with this in vitro model for dogs.

Inclusion of small intestinal absorption and simulated mucosal surfaces further improve the Mucosal Simulator of the Canine Intestinal Microbial Ecosystem (M-SCIME™)

Pignataro, Giulia;Gramenzi, Alessandro;
2021-01-01

Abstract

While a large set of in vitro models are available to study the effects of specific food ingredients (e.g. pre- and probiotics) on the human gut microbiome, the availability of such models for companion animals is limited. Since improving gut health of such animals is an emerging research field, the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME™) was recently developed and validated with in vivo data. The current study presents a further improvement of this model by using an alternative method for feed preparation, i.e. by administering digestive enzymes to mimic upper gastro-intestinal digestion followed by a dialysis approach to mimic small intestinal absorption. As opposed to the previously implemented method, this resulted in a more optimal simulation of protein digestion and absorption. Further, upon entrance in the colon, increased production of the health-promoting butyrate and lower levels of Lactobacillus spp. and Bifidobacterium spp. were observed, which corresponded better with obtained in vivo data. A second model improvement consisted of the implementation of a mucosal environment to not only simulate luminal but also mucosal microbiota. In consistency with the human model for which this technology was previously validated, it was found that for all canine microbiota mucin beads were enriched with members of the Lachnospiraceae (~ Clostridium cluster XIVa), a family containing multiple well-known butyrate producers. The SCIME™ was thus upgraded to a so-called Mucosal SCIME™ (M-SCIME™). In conclusion, the current study presents improvements of the SCIME™, further increasing the relevance of obtained data with this in vitro model for dogs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/122482
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact