A new green and effective sonochemical liquid-phase exfoliation (LPE) is proposed wherein a flavonoid compound, catechin (CT), promotes the formation of conductive, redox‐active, water‐phase stable graphene nanoflakes (GF). To maximize the GF-CT redox activity, the CT concentration and sonication time have been studied, and the best performing nanomaterial-fraction selected. Physicochemical and electrochemical methods have been employed to characterize the morphological, structural, and electrochemical features of the GF-CT nanoflakes. The obtained GF intercalated with CT exhibits fully reversible electrochemistry (ΔEp = 28 mV, ipa/ipc = ⁓1) because of the catecholic adducts. GF-CT-integrated electrochemistry was generated directly during LPE of graphite, with no need of graphene oxide production, nor activation steps, electropolymerization, or ex-post functionalization. The GF-CT electro-mediator ability has been proven towards hydrazine (HY) and β-nicotinamide adenine dinucleotide (NADH) by simply drop-casting the redox-material onto screen-printed electrodes. GF-CT-based electrodes by using amperometry exhibited high sensitivity and extended linear ranges (HY: LOD = 0.1 µM, L.R. 0.5–150 µM; NADH: LOD = 0.6 µM, L.R. 2.5–200 µM) at low overpotential (+ 0.15 V) with no electrode fouling. The GF-CT electrodes are performing significantly better than commercial graphite electrodes and graphene nanoflakes exfoliated with a conventional surfactant, such as sodium cholate. Recoveries of 94–107% with RSD ≤ 8% (n = 3) for determination of HY and NADH in environmental and biological samples were achieved, proving the material functionality also in challenging analytical media. The presented GF-CT is a new functional redox-active material obtainable with a single-pot sustainable strategy, exhibiting standout properties particularly prone to (bio)sensors and cutting-edge device development. Graphical abstract: [Figure not available: see fulltext.].

(+)-Catechin-assisted graphene production by sonochemical exfoliation in water. A new redox-active nanomaterial for electromediated sensing

Silveri F.;Della Pelle F.;Bukhari Q. U. A.;Compagnone D.
2021-01-01

Abstract

A new green and effective sonochemical liquid-phase exfoliation (LPE) is proposed wherein a flavonoid compound, catechin (CT), promotes the formation of conductive, redox‐active, water‐phase stable graphene nanoflakes (GF). To maximize the GF-CT redox activity, the CT concentration and sonication time have been studied, and the best performing nanomaterial-fraction selected. Physicochemical and electrochemical methods have been employed to characterize the morphological, structural, and electrochemical features of the GF-CT nanoflakes. The obtained GF intercalated with CT exhibits fully reversible electrochemistry (ΔEp = 28 mV, ipa/ipc = ⁓1) because of the catecholic adducts. GF-CT-integrated electrochemistry was generated directly during LPE of graphite, with no need of graphene oxide production, nor activation steps, electropolymerization, or ex-post functionalization. The GF-CT electro-mediator ability has been proven towards hydrazine (HY) and β-nicotinamide adenine dinucleotide (NADH) by simply drop-casting the redox-material onto screen-printed electrodes. GF-CT-based electrodes by using amperometry exhibited high sensitivity and extended linear ranges (HY: LOD = 0.1 µM, L.R. 0.5–150 µM; NADH: LOD = 0.6 µM, L.R. 2.5–200 µM) at low overpotential (+ 0.15 V) with no electrode fouling. The GF-CT electrodes are performing significantly better than commercial graphite electrodes and graphene nanoflakes exfoliated with a conventional surfactant, such as sodium cholate. Recoveries of 94–107% with RSD ≤ 8% (n = 3) for determination of HY and NADH in environmental and biological samples were achieved, proving the material functionality also in challenging analytical media. The presented GF-CT is a new functional redox-active material obtainable with a single-pot sustainable strategy, exhibiting standout properties particularly prone to (bio)sensors and cutting-edge device development. Graphical abstract: [Figure not available: see fulltext.].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/116783
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact