While intracytoplasmic sperm injection (ICSI) is an asset in human Assisted Reproduction Technologies (ART), its outcomes, in terms of blastocyst, is still unacceptably low in ruminants. The picture typically found in ICSI derived bovine and ovine embryos is an asymmetry between a high activation rate, marked by a pronuclear development, and a low first cleavage rate. Abnormal centriole function has been indicated as a possible factor which undermines embryonic development following ICSI, especially when Freeze Dried spermatozoa (FD) are used. In order to verify the hypothesis that centriole dysfunction might be responsible for low ICSI outcomes in sheep, we have investigated micro-tubular dynamics, markedly aster nucleation, in fertilized sheep zygotes by ICSI with frozen/thawed (FT) and FD spermatozoa; In Vitro Fertilized (IVF) sheep oocytes were used as control. The spermatozoa aster nucleation was assessed at different time points following ICSI and IVF by immune-detection of a-tubulin. Pronuclear stage, syngamy and embryo development were assessed. No difference was noticed in the timing of aster nucleation and microtubule elongation in ICSI-FT derived embryos with control IVF ones, while a delay was recorded in ICSI-FD ones. The proportion of 2-pronuclear stage zygotes was similar in ICSI-FT and ICSI-FD (47% and 53%, respectively), both much lower comparing the IVF ones (73%). Likewise, syngamy was observed in a minority of both ICSI groups (28.5% vs 12.5% in ICSI-FT/FD respectively) comparing to IVF controls (50%), with a high number of zygotes blocked at the 2-pronuclear stage (71.5% vs 87.5% respectively). While no significant differences were noticed in the cleavage rate between ICSI-FD, ICSI-FT and IVF groups (31%, 34% and 44%) respectively, development to blastocyst stage was markedly compromised in both ICSI groups, especially with FD spermatozoa (10% in ICIS-FD and 19% in ICSI-FT vs 33% in IVF (P < 0.005, ICSI-FD vs IVF and P < 0.05, IVF vs ICSI-FT, respectively). Hence, here we have demonstrated that the reduced cleavage, and the ensuing impaired development to blastocysts stage of ICSI derived sheep embryos is not related to centriole dysfunction, as suggested by other authors. The major recorded problem is the lack of syngamy in ICSI derived zygotes, an issue that should be addressed in further studies to improve ICSI procedure in sheep embryos.

The impaired development of sheep ICSI derived embryos is not related to centriole dysfunction

Yosra Ressaissi;Debora Agata Anzalone;Luca Palazzese;Marta Czernik;Pasqualino Loi
2020

Abstract

While intracytoplasmic sperm injection (ICSI) is an asset in human Assisted Reproduction Technologies (ART), its outcomes, in terms of blastocyst, is still unacceptably low in ruminants. The picture typically found in ICSI derived bovine and ovine embryos is an asymmetry between a high activation rate, marked by a pronuclear development, and a low first cleavage rate. Abnormal centriole function has been indicated as a possible factor which undermines embryonic development following ICSI, especially when Freeze Dried spermatozoa (FD) are used. In order to verify the hypothesis that centriole dysfunction might be responsible for low ICSI outcomes in sheep, we have investigated micro-tubular dynamics, markedly aster nucleation, in fertilized sheep zygotes by ICSI with frozen/thawed (FT) and FD spermatozoa; In Vitro Fertilized (IVF) sheep oocytes were used as control. The spermatozoa aster nucleation was assessed at different time points following ICSI and IVF by immune-detection of a-tubulin. Pronuclear stage, syngamy and embryo development were assessed. No difference was noticed in the timing of aster nucleation and microtubule elongation in ICSI-FT derived embryos with control IVF ones, while a delay was recorded in ICSI-FD ones. The proportion of 2-pronuclear stage zygotes was similar in ICSI-FT and ICSI-FD (47% and 53%, respectively), both much lower comparing the IVF ones (73%). Likewise, syngamy was observed in a minority of both ICSI groups (28.5% vs 12.5% in ICSI-FT/FD respectively) comparing to IVF controls (50%), with a high number of zygotes blocked at the 2-pronuclear stage (71.5% vs 87.5% respectively). While no significant differences were noticed in the cleavage rate between ICSI-FD, ICSI-FT and IVF groups (31%, 34% and 44%) respectively, development to blastocyst stage was markedly compromised in both ICSI groups, especially with FD spermatozoa (10% in ICIS-FD and 19% in ICSI-FT vs 33% in IVF (P < 0.005, ICSI-FD vs IVF and P < 0.05, IVF vs ICSI-FT, respectively). Hence, here we have demonstrated that the reduced cleavage, and the ensuing impaired development to blastocysts stage of ICSI derived sheep embryos is not related to centriole dysfunction, as suggested by other authors. The major recorded problem is the lack of syngamy in ICSI derived zygotes, an issue that should be addressed in further studies to improve ICSI procedure in sheep embryos.
File in questo prodotto:
File Dimensione Formato  
Ressaissi et al. 2020.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 920.81 kB
Formato Adobe PDF
920.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/110129
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact