The study of the immune response in several types of tumours has been rapidly increasing in recent years with the dual aim of understanding the interactions between neoplastic and immune cells and their importance in cancer pathogenesis and progression, as well as identifying targets for cancer immunotherapy. Despite being considered one of the most immunogenic tumour types, melanoma can progress in the presence of abundant lymphocytic infiltration, therefore suggesting that the immune response is not able to efficiently control tumour growth. The purpose of this study was to investigate whether the density, distribution and grade of tumour-infiltrating lymphocytes (TILs) in 97 canine melanocytic tumours is associated with histologic indicators of malignancy and can be considered a prognostic factor in the dog. As a further step in the characterization of the immune response in melanocytic tumours, an immunohistochemical investigation was performed to evaluate the two main populations of TILs, T-lymphocytes (CD3+) and B-lymphocytes (CD20+). The results of our study show that TILs are present in a large proportion of canine melanocytic tumours, especially in oral melanomas, and that the infiltrate is usually mild. The quantity of CD20+ TILs was significantly associated with some histologic prognostic factors, such as the mitotic count, the cellular pleomorphism and the percentage of pigmented cells. Remarkably, a high infiltration of CD20+ TILs was associated with tumour-related death, presence of metastasis/recurrence, shorter overall and disease-free survival, increased hazard of death and of developing recurrence/metastasis, hence representing a potential new negative prognostic factor in canine melanocytic tumours.

Tumour-infiltrating lymphocytes in canine melanocytic tumours: An investigation on the prognostic role of CD3+ and CD20+ lymphocytic populations

Bongiovanni L.;Lepri E.;
2019-01-01

Abstract

The study of the immune response in several types of tumours has been rapidly increasing in recent years with the dual aim of understanding the interactions between neoplastic and immune cells and their importance in cancer pathogenesis and progression, as well as identifying targets for cancer immunotherapy. Despite being considered one of the most immunogenic tumour types, melanoma can progress in the presence of abundant lymphocytic infiltration, therefore suggesting that the immune response is not able to efficiently control tumour growth. The purpose of this study was to investigate whether the density, distribution and grade of tumour-infiltrating lymphocytes (TILs) in 97 canine melanocytic tumours is associated with histologic indicators of malignancy and can be considered a prognostic factor in the dog. As a further step in the characterization of the immune response in melanocytic tumours, an immunohistochemical investigation was performed to evaluate the two main populations of TILs, T-lymphocytes (CD3+) and B-lymphocytes (CD20+). The results of our study show that TILs are present in a large proportion of canine melanocytic tumours, especially in oral melanomas, and that the infiltrate is usually mild. The quantity of CD20+ TILs was significantly associated with some histologic prognostic factors, such as the mitotic count, the cellular pleomorphism and the percentage of pigmented cells. Remarkably, a high infiltration of CD20+ TILs was associated with tumour-related death, presence of metastasis/recurrence, shorter overall and disease-free survival, increased hazard of death and of developing recurrence/metastasis, hence representing a potential new negative prognostic factor in canine melanocytic tumours.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/109146
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact