The current study evaluated the effect of five yeast-derived formulations (T1-T5) on microbial metabolism and composition of the canine and feline gut microbiota using a novel in vitro colonic incubation approach. This novel in vitro model allowed for growth of the entire spectrum of dog- and cat-derived bacteria from the inoculum, thus offering an excellent platform to evaluate effects of nutritional interventions on the gut microbiota. Further, yeast-derived ingredients differentially increased production of acetate, propionate, butyrate, ammonium, and branched short-chain fatty acids, with T5 and T1 consistently stimulating propionate and butyrate, respectively. 16S-targeted Illumina sequencing coupled with flow cytometry provided unprecedented high-resolution quantitative insights in canine and feline microbiota modulation by yeast-derived ingredients, revealing that effects on propionate production were related to Prevotellaceae, Tannerellaceae, Bacteroidaceae, and Veillonellaceae members, while effects on butyrate production were related to Erysipelotrichaceae, Lachnospiraceae, Ruminococcaceae, and Fusobacteriaceae. Overall, these findings strengthen the health-promoting potential of yeast-derived ingredients.

Yeast-Derived Formulations Are Differentially Fermented by the Canine and Feline Microbiome As Assessed in a Novel in Vitro Colonic Fermentation Model

Pignataro G.;Gramenzi A.;
2020-01-01

Abstract

The current study evaluated the effect of five yeast-derived formulations (T1-T5) on microbial metabolism and composition of the canine and feline gut microbiota using a novel in vitro colonic incubation approach. This novel in vitro model allowed for growth of the entire spectrum of dog- and cat-derived bacteria from the inoculum, thus offering an excellent platform to evaluate effects of nutritional interventions on the gut microbiota. Further, yeast-derived ingredients differentially increased production of acetate, propionate, butyrate, ammonium, and branched short-chain fatty acids, with T5 and T1 consistently stimulating propionate and butyrate, respectively. 16S-targeted Illumina sequencing coupled with flow cytometry provided unprecedented high-resolution quantitative insights in canine and feline microbiota modulation by yeast-derived ingredients, revealing that effects on propionate production were related to Prevotellaceae, Tannerellaceae, Bacteroidaceae, and Veillonellaceae members, while effects on butyrate production were related to Erysipelotrichaceae, Lachnospiraceae, Ruminococcaceae, and Fusobacteriaceae. Overall, these findings strengthen the health-promoting potential of yeast-derived ingredients.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/107603
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact