In Model Driven Engineering bidirectional transformations are considered a core ingredient for managing both the consistency and synchronization of two or more related models. However, while non-bijectivity in bidirectional transformations is considered relevant, current languages still lack of a common understanding of its semantic implications hampering their applicability in practice. In this paper, the Janus Transformation Language (JTL) is presented, a bidirectional model transformation language specifically designed to support non-bijective transformations and change propagation. In particular, the language propagates changes occurring in a model to one or more related models according to the specified transformation regardless of the transformation direction. Additionally, whenever manual modifications let a model be non reachable anymore by a transformation, the closest model which approximate the ideal source one is inferred. The language semantics is also presented and its expressivity and applicability are validated against a reference benchmark. JTL is embedded in a framework available on the Eclipse platform which aims to facilitate the use of the approach, especially in the definition of model transformations. © 2011 Springer-Verlag Berlin Heidelberg.

JTL: A bidirectional and change propagating transformation language

Eramo R.;
2011-01-01

Abstract

In Model Driven Engineering bidirectional transformations are considered a core ingredient for managing both the consistency and synchronization of two or more related models. However, while non-bijectivity in bidirectional transformations is considered relevant, current languages still lack of a common understanding of its semantic implications hampering their applicability in practice. In this paper, the Janus Transformation Language (JTL) is presented, a bidirectional model transformation language specifically designed to support non-bijective transformations and change propagation. In particular, the language propagates changes occurring in a model to one or more related models according to the specified transformation regardless of the transformation direction. Additionally, whenever manual modifications let a model be non reachable anymore by a transformation, the closest model which approximate the ideal source one is inferred. The language semantics is also presented and its expressivity and applicability are validated against a reference benchmark. JTL is embedded in a framework available on the Eclipse platform which aims to facilitate the use of the approach, especially in the definition of model transformations. © 2011 Springer-Verlag Berlin Heidelberg.
2011
9783642194399
9783642194405
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/151146
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 126
  • ???jsp.display-item.citation.isi??? ND
social impact