The adoption of model-driven engineering in the automotive domain resulted in the standardization of a layered architectural description language, namely EAST-ADL, which provides means for enforcing abstraction and separation of concerns, but no support for automation among its abstraction levels. This support is particularly helpful when manual transitions among levels are tedious and error-prone. This is the case of design and implementation levels. Certain fundamental analyses (e.g., timing), which have a significant impact on design decisions, give precise results only if performed on implementation level models, which are currently created manually by the developer. Dealing with complex systems, this task becomes soon overwhelming leading to the creation of a subset of models based on the developers experience; relevant implementation level models may therefore be missed. In this work, we describe means for automation between EAST-ADL design and implementation levels to anticipate end-to-end delay analysis at design level for driving design decisions.
Anticipating implementation level timing analysis for driving design level decisions in EAST-ADL
Eramo R.;
2015-01-01
Abstract
The adoption of model-driven engineering in the automotive domain resulted in the standardization of a layered architectural description language, namely EAST-ADL, which provides means for enforcing abstraction and separation of concerns, but no support for automation among its abstraction levels. This support is particularly helpful when manual transitions among levels are tedious and error-prone. This is the case of design and implementation levels. Certain fundamental analyses (e.g., timing), which have a significant impact on design decisions, give precise results only if performed on implementation level models, which are currently created manually by the developer. Dealing with complex systems, this task becomes soon overwhelming leading to the creation of a subset of models based on the developers experience; relevant implementation level models may therefore be missed. In this work, we describe means for automation between EAST-ADL design and implementation levels to anticipate end-to-end delay analysis at design level for driving design decisions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.