There is an increasing interest for analytical methods aimed to detect biological sulfur-containing amines, because of their involvement in human diseases and metabolic disorders. This work describes an improved HPLC method for the determination of sulfur containing amino acids and amines from different biological matrices We optimized a pre-column derivatization procedure using dabsyl chloride, in which dabsylated products can be monitored spectrophotometrically at 460 nm. This method allows the simultaneous analysis of biogenic amines, amino acids and sulfo-amino compounds including carnosine, dopamine, epinephrine, glutathione, cysteine, taurine, lanthionine, and cystathionine in brain specimens, urines, plasma, and cell lysates. Moreover, the method is suitable for the study of physiological and non-physiological derivatives of taurine and glutathione such as hypotaurine, homotaurine, homocysteic acid and S-acetylglutathione. The present method displays good efficiency of derivatization, having the advantage to give rise to stable products compared to other derivatizing agents such as o-phthalaldehyde and dansyl chloride. With this method, we provide a tool to study sulfur cycle from a metabolic point of view in relation to the pattern of biological amino-compounds, allowing researchers to get a complete scenario of organic sulfur and amino metabolism in tissues and cells.

HPLC determination of bioactive sulfur compounds, amino acids and biogenic amines in biological specimens

Francioso, Antonio;
2017-01-01

Abstract

There is an increasing interest for analytical methods aimed to detect biological sulfur-containing amines, because of their involvement in human diseases and metabolic disorders. This work describes an improved HPLC method for the determination of sulfur containing amino acids and amines from different biological matrices We optimized a pre-column derivatization procedure using dabsyl chloride, in which dabsylated products can be monitored spectrophotometrically at 460 nm. This method allows the simultaneous analysis of biogenic amines, amino acids and sulfo-amino compounds including carnosine, dopamine, epinephrine, glutathione, cysteine, taurine, lanthionine, and cystathionine in brain specimens, urines, plasma, and cell lysates. Moreover, the method is suitable for the study of physiological and non-physiological derivatives of taurine and glutathione such as hypotaurine, homotaurine, homocysteic acid and S-acetylglutathione. The present method displays good efficiency of derivatization, having the advantage to give rise to stable products compared to other derivatizing agents such as o-phthalaldehyde and dansyl chloride. With this method, we provide a tool to study sulfur cycle from a metabolic point of view in relation to the pattern of biological amino-compounds, allowing researchers to get a complete scenario of organic sulfur and amino metabolism in tissues and cells.
2017
978-94-024-1077-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/125563
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 12
social impact