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Brain tumors mainly originate from glial cells and are classified as gliomas. Malignant

gliomas represent an incurable disease; indeed, after surgery and chemotherapy,

recurrence appears within a few months, and mortality has remained high in the last

decades. This is mainly due to the heterogeneity of malignant gliomas, indicating that

a single therapy is not effective for all patients. In this regard, the advent of theranostic

nanomedicine, a combination of imaging and therapeutic agents, represents a strategic

tool for themanagement of malignant brain tumors, allowing for the detection of therapies

that are specific to the single patient and avoiding overdosing the non-responders. Here,

recent theranostic nanomedicine approaches for glioma therapy are described.

Keywords: theranostic nanoplatform, brain tumors, targeted therapy, drug delivery, diagnosis

THERANOSTIC TECHNOLOGY

Theranostics is the combination of the two terms “Therapeutics” and “Diagnostics,” referring to
technologies that include both diagnostic and therapeutic applications (Figure 1). The interest
in personalized medicine, and thus, theranostic approaches used for individualized diagnosis and
treatment are gaining increasing attention (Sun, 2010; Kelkar and Reineke, 2011; Kievit and Zhang,
2011; Ahmed et al., 2012; Wang Y. et al., 2014). This technology allows us to save time and decrease
costs but, notably, also allows us to contain side effects of a single strategy (Lammers et al., 2010),
obtaining better patient outcomes (Duncan, 2003; Peer et al., 2007).

Nanoplatforms (NPS) are nanoparticles combined with drug and molecular imaging probes,
including metal nanoparticles, polymer-drug conjugates, polymer micelles, liposomes, and
dendrimers. NPS show several advantages over conventional formulations, allowing for the
conjugation or entrapment of drugs (Peer et al., 2007). Nanoparticles (NPs) are complex drug
delivery systems, which can be structurally divided into the internal layer (core), and external
layer (shell). Nanodimensions ensure that nanoparticles are able to increase drug solubility,
mitigate cytotoxicity, and improve drug pharmacokinetic profiles. The creation of nanoplatforms,
combining drugs with molecular probes, increases the drug half-life in the circulatory system,
and specifically, delivers anticancer drugs to target tissues, controlling the drug release through
detectors responsive to different stimuli such as pH, temperature, light, ultrasound, and enzymatic
activities, thus improving the delivering of the required drug concentration to the area of interest
(Tong and Cheng, 2007). By means of improving the circulating half-life, nanomedicines can
accumulate in tumors through the Enhanced Permeability and Retention (EPR) effect (Golombek
et al., 2018). In the last years, it has been reported that EPR varies among mouse models and
patients, between tumor types of the same origin, and also among tumors and metastases of the
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same patient (Harrington et al., 2001; Tanaka et al., 2017), thus
explaining the heterogeneous outcomes of nanomedicine clinical
trials. To overcome this issue, efforts should be focused on the use
of methods that can be employed to individualize and improve
nanomedicine treatments.

Despite the advantages offered by the EPR effect, the passive
targeting approach offers a limited benefit in the treatment of
gliomas and other CNS disorders. In these situations, the BBB
remains impenetrable for different nanostructures that tend to
accumulate in off-target tissues that also have vasculature gaps,
such as the liver, or lymph nodes (Nam et al., 2018).

Since theranostic approaches require the use of molecular
imaging tools, a combination of drug delivery systems with
imaging techniques, such as computed tomography (CT),
magnetic resonance imaging (MRI), optical and ultrasound
(US) imaging, positron emission tomography (PET), and single
photon emission computed tomography (SPECT), are currently
under study. All these imaging techniques, using sensible and
specific probes, can, in fact, assess drug efficacy during the drug
development procedures (Cai et al., 2006; Pysz et al., 2010; Ai,
2011; Ang et al., 2014), optimizing the right choice of imaging
tools and agents (Jokerst and Gambhir, 2011) and defining the
best combination for specific therapeutic applications.

MULTIFUNCTIONALIZED
NANOPLATFORMS

Multifunctionalized NPS are promising therapeutic approaches
in cancer therapy (Table 1). Indeed, they offer numerous
advantages over conventional agents, including specific targets,
the higher ability to solubilize hydrophobic or labile drugs,
lower systemic toxicity (resulting in better pharmacokinetics and
higher potential to image), and better treatment and prediction
of a therapeutic response. NPS utilize nanostructures, such as
nanoparticles, made from soluble or colloidal aqueous solutions

FIGURE 1 | Theranostic medicine provides new tools to improve diagnostic specificity and therapeutic effectiveness. Therefore, a nanoparticle-containing tracer can

be useful to overcome the limitations of conventional diagnostic and therapeutic techniques. CT, computed tomography; MRI, magnetic resonance imaging; USI,

ultrasound imaging; OI, optical imaging; PET, positron emission tomography; SPECT, single-photon emission computed tomography.

and with sizes ranging between 10 and 100 nm (Bhojani et al.,
2010). The small size allows them to pass via blood capillaries
and reach the specific tumor cells (Bhojani et al., 2010). They
have the advantages of modifying the nature and the number
of linkers on and within the surface of a nanoparticle and its
dimensions, thus leading to the control of the loading/releasing
of the entrapped or covalently linked drugs. The NPS can also
ameliorate the efficacy of current drugs or tracers, triggering
a selective delivery. Among NPS, those based on nanovesicles
are also biocompatible, thus increasing the maximum tolerated
dose of the drug with low toxicity. This leads to an increased
concentration of the agent inside the tumor and a simultaneous
decrease in side effects (Liong et al., 2008; Bhojani et al., 2010).
The entrapment of the drug with nanoplatforms reduces the
limit for the use of poorly soluble or poorly absorbed agents
by encapsulating them in the matrix of the NPS during the
design and synthetic processes. Furthermore, the encapsulation
prevents premature degradation of drugs or inactivation during
plasma transport. Being a multidelivery system represents one
of the most advantageous characteristics of NPS. They can
carry imaging tracers, targeting ligands, therapeutic agents, and
“cloaking” agents that avoid interference with the immune
system (reviewed in Bhojani et al., 2010; Mendes et al., 2018).

Cancer researchers have shown high interest in theranostic
approaches, particularly to detect and develop a solid nanosystem
strategy for cancer treatment and diagnosis that can be translated
into clinical practice (Cole et al., 2011).

Typical examples of the design of biocompatible
nanoplatforms used as theranostic agents are based on magnetic
nanoparticles, polymers, vesicles nanoparticles, and dendrimers.

Magnetic nanoparticles have been prepared using, for
example, IONPs (iron oxide nanoparticles) coated with a human
serum albumin. This formulation is referred as a biocompatible
material for a chemotherapeutic agent, photosensitizers, andNPS
(reviewed in Choi et al., 2012). Polymeric conjugates for drug
delivery, biodistribution, and drug efficiency were extensively
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TABLE 1 | Nanoplatforms examples and their characteristics.

Nanoplatforms Biosafety Size Loading

capacity

References

Magnetic

Nanoparticle

DOX

IONPS

Low

toxicity

10–

50 nm

High Choi et al.,

2012

Polymer-

conjugates

DOX-GEM

GADOLINIUM

HPMA

Low

toxicity

20–

70 nm

Good Vilos and

Velasquez,

2012

Nanovesicles β(CD)

SPIO

Polymericmicelles

Really low

toxicity

10–

70 nm

High Liong et al.,

2008; Bhojani

et al., 2010

Dendrimers asODN

MNP

PAMAM

Potential

toxicity

10–

40 nm

High Pan et al.,

2007

Different nanoplatforms and the respective biosafety, size, and loading capacity.

DOX-conjugated, doxorubicin; PAMAM, poly(amidoamine); IONPs, iron oxide

nanoparticles; DOX-GEM, gemcitabine (GEM), and doxorubicin (DOX); HPMA, N-2-

hydroxypropylmethacrylamide; asODN, antisense oligodeoxynucleotides; MNPs,

Magnetic Nanoparticles; SPIO, superparamagnetic iron oxide.

investigated (Vilos and Velasquez, 2012). Lammers et al.
(2010) synthesized a simultaneous delivery of doxorubicin and
gemcitabine, and they were labeled with a gadolinium HPMA
(N-2-hydroxypropylmethacrylamide) copolymer to investigate
the biodistribution of nanotheranostics using an MRI (Lammers
et al., 2010). This investigation reported that tumor-targeted
polymeric drug vectors could be utilized to deliver two different
chemotherapeutic drugs to tumors concurrently (Lammers et al.,
2010).

Polymeric micelles, nano core/shell structures constituted by
amphiphilic copolymers, were thoroughly tested as theranostic
carriers and imaging probes as well. The amphiphilic block
copolymers captured the superparamagnetic iron oxide (SPIO)
or Mn-SPIO nanoparticles and are employed for the MRI
(Lu et al., 2009; Liu et al., 2011; Xie et al., 2011; Su et al.,
2013). β-cyclodextrin (β-CD) has been successfully used to
encapsulate SPIO nanoparticles and small molecule anticancer
drugs (Su et al., 2013). Several multifunctional polymeric micelles
for tumor drug delivery and distribution have been designed,
with particular attention to the creation of a well-controlled
nanostructure. The use of polymeric micelles is advantageous
because they can entrap an elevated number of hydrophobic
drugs and contrast agents, maintaining their hydrophilic feature
as a carriers, compared to liposomes or soluble polymers.
Polymeric micelles are recognized as multifunctional delivery
systems that are able to maximize therapeutic efficacy (Vilos and
Velasquez, 2012).

Liposomes are already approved by the FDA since they
are able to incorporate drugs, such as chemotherapeutics
(Al-Jamal and Kostarelos, 2011). Approved formulations are
liposomal doxorubicin and pegylated liposomal doxorubicin,
which show low toxicity, cardiac safety, and less alopecia,
myelosuppression, nausea, and vomiting when compared to
conventional anthracyclines. The difficulty in releasing the
encapsulated drug in the target area is caused by a limit in
the liposome system. To overcome this issue, new liposome
systems have been designed that are able to induce a pH

and temperature response or the activation of certain enzymes
on liposome cavities, thus improving the drug release in the
targeted area (Lindner and Hossann, 2010; Wang D. et al.,
2014). Recently, multifunctional theranostic nanoplatforms,
using contrast agents encapsulated with liposomes, have been
developed for the simultaneous diagnosis of early stage of
disease and drug delivery, utilizing liposomes that encapsulate
contrast agents, resulting in the creation of multifunctional NPS
(Kenny et al., 2011; Na et al., 2011; Petersen et al., 2012).
A theranostic nanosystem that provides the incorporation of
magnetic nanoparticles inside the liposomes has been developed
(Fattahi et al., 2011). Thus, multifunctional theranostic liposomes
are widely used in treatment and for the detection of diseases, and
they represent a valid carrier to further improve the diagnostic
and therapeutic efficacy.

Furthermore, dendrimers are gaining increasing importance
in the theranostic field as they can, due to their size,
encapsulate several drugs or imaging tracers with high
efficiency. For instance, dendrimers can bind non-covalently
or covalently to chemotherapeutic drugs, imaging agents,
and other biologically active targeting moieties, such
as peptides, monoclonal antibodies, and folates (Boas
and Heegaard, 2004; Mintzer and Grinstaff, 2011; Lo
et al., 2013). The characteristic structure of dendrimers
can stabilize the hydrophobic nanoparticles through the
ligand exchange reaction method. Recently, multifunctional
doxorubicin (DOX)-conjugated poly(amidoamine) (PAMAM)
dendrimers have been developed with a specific platform
for targeted chemotherapy that uses pH to release the
drug to tumor cells. This multifunctional dendrimer
presented excellent biocompatibility, biodistribution,
and satisfactory cancer imaging results (Chang et al.,
2011). Dendrimers represent promising structures for
functionalization and also for conjugation with drugs
(chemotherapeutics and imaging tracers) and DNA/RNA
(Pan et al., 2007; Merkel et al., 2010; Zottel et al., 2019).

GLIOMAS

Glioma is a common type of tumor arising from glia-
supporting neurons. About 33% of all brain tumors are
gliomas and show different malignancy and differentiation
grades. Symptoms depend on the area of the brain affected
and by the degree of malignancy; they include headaches,
nausea, or vomiting, speech difficulties, vertigo, and motor
alteration. In its advanced stages, seizures may be a common
manifestation. Gliomas are classified on the basis of the
glial type but also on the genetic signature that predicts the
outcome and the response to treatment. Gliomas are classified,
according to the World Health Organization, as astrocytoma,
anaplastic astrocytoma and glioblastoma, oligodendrogliomas,
ependymomas, and mixed gliomas (Wesseling and Capper,
2018). Glioblastoma (GB) multiforme is the most malignant
and common (more than 60%) type of primary astrocytomas
(Rock et al., 2012). Despite the modern therapies to treat
GB, it is still a deadly disease with an extremely poor
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prognosis. Patients usually have a median survival of ∼14–
15 months from the diagnosis (Thakkar et al., 2014). The
standard treatment for GB is the resection of the tumor
by neurosurgery, followed by radiation, and chemotherapy
administration. However, these therapies are often ineffective,
having a high rate of recurrence and drug resistance over time,
accompanied by severe neurological deterioration of the affected
patient (Silantyev et al., 2019).

The surgical approach is often not efficient due to the
frequent persistence of tumoral foci; this leads to the recurrence
of the disease (Alphandéry et al., 2015) thanks to the high
proliferative rate and invasive behavior of GB cells. In this regard,
several studies have reported the crucial role of bulk removal
in increasing life expectancy and patient outcome (Silantyev
et al., 2019). However, even bulk removal is not completely
efficient since it is, generally, followed by relapses. For these
reasons, GB is considered a not treatable disease. Temozolomide
(TMZ) is currently the gold standard treatment for GB. Its
metabolites form a complex with alkyl guanine alkyl transferase
(O6 MGMT- DNA repair protein), leading to DNA damage;
however, some patients show resistance to TMZ. Thus, many
studies have reported the efficacy of the combination of TMZ
with different compounds, such as curcumin, resveratrol, O6-
benzylguanine, valproic acid, anti-epilectic drugs, interferon 1-
β, mesenchymal stem cells, and anti-malarial drugs [extensively
reviewed in Bahadur et al. (2019)], with reduced resistance
and increased treatment efficacy. In particular, it has been
reported that the combined administration of bone marrow-
derived mesenchymal cells (MSCs), interferon β (IF-β), and
TMZ significantly decreased tumor progression in vitro and
increased the survival of patients following synergistic effects
in vivo (Park et al., 2015). More recently, the simultaneous
administration of the inducer of autophagy, sirolimus, the
inhibitor of autophagy, Chloroquine, and TMZ on glioblastoma
cells was investigated in order to obtain lysosome disruption
and apoptotic death (Hsu et al., 2018). In the same way, several
new molecules were proposed to enhance TMZ activity in
glioblastoma both in vitro and in vivo (extensively reviewed in
Bahadur et al., 2019).

The diagnostic tools to detect brain tumors are represented
by imaging tests, mainly MRI, including different specialized
MRI scan components, including functional MRI, perfusion
MRI, and magnetic resonance spectroscopy. These tools help
us to understand tumor size and to plan treatment. Other
imaging exams may include PET, a computerized tomography
(CT) scan, and a cerebral angiogram. Molecular testing of the
tumor could also be recommended for the identification of
specific proteins, genes, and other factors (i.e., tumor markers)
distinctive to the tumor. Indeed, some biomarkers may help
in determining a patient’s prognosis, increasing the chance
of recovery. For the final and definite diagnosis, a biopsy of
the tumor’s tissue is usually necessary in order for it to be
analyzed by a pathologist (Piquer et al., 2014; Tandel et al.,
2019).

The first occurrence in tumor transformation is not
completely clarified. However, it seems that the genetic
signature is different in grade II gliomas, astrocytoma, and

oligodendroglioma. All tumors initially show the same invasive
phenotype, making it difficult to develop a unique therapy.
Progression-associated genetic modifications target cell cycle-
controlling pathways and growth promoting, causing focal
hypoxia, necrosis, and angiogenesis. Retinoblastoma protein (Rb)
mutationwas identified in 20% ofmalignant gliomas (Behin et al.,
2003), although gliomas may also contain mutations in other
molecules involved in Rb signaling, including cyclin-dependent
kinase (CDK) and the cell cycle regulator cyclin-dependent
kinase inhibitor 2A, multiple tumor suppressor 1 (p16INK4A).
Most of the anaplastic astrocytoma show homozygous mutation,
deletion, and promoter hypermethylation in the INK4A/ARF
locus that encodes two tumor suppressors [p16INK4a and an
alternate reading frame tumor suppressor, p14ARF (Yamanaka,
2008)]. Moreover, it has been shown that PDGF (platelet-
derived growth factor) and platelet-derived growth factor
receptor (PDGFR) signaling are involved at the beginning of the
progression from astrocytoma to GB. In fact, elevated levels of
PDGFRα have been reported in all types of gliomas, particularly
in GB. Also, gliomas induce the overexpression of other
mitogens, including IGF-1 (Insulin like Growth factor) and EGF
(Epidermal growth factor) as well (Wong et al., 1992; Chakravarti
et al., 2002; Nicholas et al., 2006; Puputti et al., 2006; Newton,
2010). Their receptors are present as constitutively active mutant
forms in gliomas (Wong et al., 1992), leading to the activation of
numerous pathways, including PI3K/AKT PBK, phospholipase
protein C, and RAS/mitogen-activated protein kinase. In turn,
these pathways control invasion, cell proliferation, apoptosis,
and differentiation processes (Schlessinger, 2000). A common
alteration (20–40%) identified in glioblastoma that affects
the PI3K-Akt pathway is the genetic loss or mutation of
the tumor suppressor gene PTEN (Phosphatase and Tensin
homolog deleted on chromosome ten). Indeed, PTEN is a
key negative regulator of the PI3K/Akt pathway (Stambolic
et al., 1998; Cantley and Neel, 1999). In addition, gliomas
display the upregulation of angiogenic factors, such as the FGF
(fibroblast growth factor), TGF (transforming growth factor),
Interleukin 8 (IL-8), and Vascular-Endothelial Growth Factor
(VEGF) (Benoy et al., 2004; Slettenaar and Wilson, 2006; Xiao
et al., 2018). The combination of the genetic alteration of
these factors triggers a malignant glioma with an aggressive
phenotype and that is resistant to intensive therapies. In this
tumorigenic process, glioma stem cells exert a leading role
(Uchida et al., 2000; Gaya et al., 2002; Kondo et al., 2004;
Gürsel et al., 2011). Since glioma stem cells are able to self-
propagate, in order to avoid recurrence, it is fundamental
to target specifically them (Kroonen et al., 2008). The new
possibility to isolate GBM stem cells allows for new therapeutic
approaches, among which are gene replacement, knockdown,
or silencing (Kroonen et al., 2008). Since each GB patient
shows a peculiar molecular profile, the response at radio-
and chemotherapies is different. On this basis, different GB
cell lines may show a different response to Cdk inhibitors
(Caracciolo et al., 2012; Cimini et al., 2017).

GB, and other solid tumors as well, encounter metabolic
reprogramming; thus, the tumor is able to survive in hypoxic
conditions and sustain angiogenesis and hyperproliferation
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(Kroemer and Pouyssegur, 2008; Tennant et al., 2009; Fidoamore
et al., 2016; Antonosante et al., 2018).

In particular, tumor cells activate the glycolytic pathway, also
in the presence of oxygen (Warburg effect) (Frezza and Gottlieb,
2009). Indeed, tumor cells exploit the glycolytic signaling
intermediates for anabolic reactions (Gatenby and Gillies, 2004).
Only the cells subjected to these alterations are able to survive in
the tumor environment, suggesting the presence of a selection
of those with the altered metabolic phenotype (Tennant et al.,
2009). The progress in the genetic biology of gliomas, and the
recent insertion of manipulable experimental models, allows for
the development of effective targeted therapy.

TARGETED THERANOSTIC
NANOPLATFORMS FOR BRAIN CANCER
THERAPY AND IMAGING

The human brain is an extremely complicated organ, which
simultaneously regulates and supervises several functions.
Successful therapy in brain cancers is restricted because the
administered therapeutic entity cannot reach the targeted area
after systemic administration (Cheng et al., 2014), and this is
the main obstacle for the transport of the therapeutic agents
represented by the blood–brain barrier (BBB). The BBB consists
of a physical barrier, composed by vascular endothelial cells,
and is held together by tight junctions, transporters, receptors,
enzymes, and the ATP-dependent, 170-kDa efflux pump P-
glycoprotein (Sonali et al., 2016a,b,c). The BBB retains the
passage of agents with amolecular weight>500 Da but also of the
majority of small sized molecules (Wei et al., 2014; Agrawal et al.,
2017a,b). ATP-binding P-gp at the same time exerts the efflux
function for xenobiotics, and their strong expression inhibits
the passage of substrates through the BBB. The majority of
the chemotherapeutics are hydrophobic and larger in molecular
size; thus, they cannot cross the BBB spontaneously. Also,
chemotherapeutics are substrates of multidrug-resistant drug
efflux pumps, which are active on both tumor vascular cells and
the BBB (Zong et al., 2014).

Brain cancers are difficult to detect and treat during the
primary stages. The diagnosis and the detection of the volume
of the brain cancers are complex because an accumulation of
extracellular fluid (Koo et al., 2006) surrounding the tumor
region is generally present. Since the 1970s, the primary
modality to treat brain cancer includes surgical resection and/or
chemotherapy or radiotherapy (Koo et al., 2006).

Conventional diagnostic and therapeutic agents showed
improper bio-distribution andmodest pharmacokinetics, leading
to insufficient dissemination into tumors (Muthu et al., 2014a,b).
In addition, they are non-specific and can accumulate in healthy
organs, resulting in high toxicity. To overcome these issues,
the nanotheranostic approach could be very useful. Different
effective nanotheranostics brain cancer therapies have been
recognized, but they need further investigation (Lakka and
Rao, 2008; Xie et al., 2010; Keunen et al., 2011; Fan et al.,
2014; Nance et al., 2014; Arranja et al., 2017). For instance,
nanoparticle-enhanced imaging of the CNS at the subcellular

level localizes more precisely the intracranial neoplasms area
(Figure 2) (Bhojani et al., 2010). Also, nanoparticle-enhanced
neuroimaging is very useful to understand physiological
processes, including apoptosis, ischemia, inflammation, cell
differentiation, and mitosis, representing the main tool for
further research studies in neurodegenerative diseases and
stroke (reviewed in Mattei and Rehman, 2015). To study
physiological processes, many microscopic and macroscopic
imaging modalities have been established. Microscopic methods
require the invasive harvesting of tissues and imaging by
cell-based assays (i.e., for apoptosis TUNEL, Annexin V,
and Caspase Substrate Based Assays) (Cen et al., 2008).
Macroscopic imaging modalities, by contrast, visualize apoptosis
in living subjects in non-invasive modality. To date, to
study these physiological processes, various in vivo molecular
imaging technologies have been used, including Radiolabeled
Small Molecular Probes, optical imaging probes, MRI agents,
and multiple-modality methods. Microscopic and macroscopic
imaging strategies improved the understanding of various
physiological processes, or pathologies in preclinical and clinical
studies (Zeng et al., 2015).

Unfortunately, the BBB still represents a limitation for
nanotheranostic delivery (Wilhelm and Krizbai, 2014). To
facilitate in vitro studies of drug delivery to the brain, promising
in vitro BBB models have been developed based on primary
or immortalized cells or on the culture of brain endothelial
cells (Wilhelm and Krizbai, 2014; Helms et al., 2016). Valid
models can be obtained using primary porcine brain endothelial
cells and rodent co-culture models, which are characterized by
low paracellular permeability and functional efflux transporters,
mimicking the in vivo physiological complexity of the in
vivo BBB. These include triple co-culture (brain endothelial
cells with pericytes and astrocytes), dynamic, and microfluidic
models, but these models are not suitable for rapid analyses.
Great efforts have been made to deliver diagnostic agents
and drugs into the brain. Thanks to recent advances in BBB
research, new approaches have been exploited. Strategies able
to pass through the BBB and reach the brain include viral
vectors (characterized by high gene transfection efficiency),
exosomes, brain permeability enhancers, and nanoparticles
(Dong, 2018).

For example, Pilkington et al., in one of these in vitro
BBB models, tested the properties of chitosyme nanoparticulate
structures on BBB integrity, analyzing the tight junction
proteins (ZO-1, occludin) and effects on the extra cellular
matrix (Pilkington et al., 2014). In additional studies, paclitaxel
(PTX) were constructed with a cyclic Arg-Gly-Asp (RGD)
peptide as a targeting ligand to pass through the BBB by a
targeting method. The nanocarriers were tested on a 3D glioma
spheroid of glioma cells grown on agarose and showed targeted
accumulation into tumor spheroids and excellent infiltration
compared with conventional nanocarriers, suggesting a potential
use in therapeutic approaches (Jiang et al., 2013). The theranostic
nanosystems are combined with the targeting agent that identifies
definite targets of brain cancer cells and binds to and internalizes
via a specific mechanism. Several nanomaterials, including Gold
Nanoparticles (AuNPs) and Quantum Dots (QDs) have intrinsic
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FIGURE 2 | Summary scheme of nanoparticles potentially useful in theranostic nanomedicine for glioma. In this scheme, three sets (therapeutics, diagnostics, and

nanocarriers to overcome the BBB) related to the potential application of nanoparticles are reported.

diagnostic/therapeutic properties (Muthu et al., 2014a; Sonali
et al., 2018).

GOLD NANOPARTICLES

Gold Nanoparticles designed from gold cores represent a new
system for theranostic systems (Table 2). They are biocompatible
and are usually prepared as spheres, wire, rods, cubes, and cages.
AuNPs, like other inorganic nanoparticles, trigger oxidative
stress and subsequent cytotoxic effects. The spheroidal AuNPs
ultraviolet (UV) absorption is at 520 nm, while the gold nanorods
absorption is in the Infrared radiation (690–900 nm). These
intrinsic optical characteristic allow AuNPs to be utilized as
multifarious theranostic drugs for clinical applications (Xie et al.,
2010; Kumar et al., 2013). AuNPs showed a diagnostic property,
tunable core size, low toxicity, surface plasmon absorption
and ease of fabrication, and light-scattering properties (Fan
et al., 2014). AuNPs have been widely studied; for example,
Melancon et al. formulated multi-utility gold-based nanoshells
with optical and magnetic activities, which were additionally
conjugated with targeting moiety and studied as an approach
for head and neck cancer (Melancon et al., 2011). It has

been shown that AuNPs improve the treatment of gliomas; for
instance, the use of AuNPs-combined radiotherapy promoted
long-term survival with respect to radiation therapy alone
(Hainfeld et al., 2013; Joh et al., 2013). In another study, a
theranostic system for cancer treatment, which was able to
reduce the cytotoxic effect on normal cells, has been developed
based on the use of gold nanoparticles surface-functionalized

with a paclitaxel drug and biotin receptor. Two categories,

AuNPs-4 and AuNPs-5, were investigated for their peculiar
interaction with cancer cells. These nanoparticles were tested
against the immortalized NIH3T3 cells, and it was suggested
that the AuNPs-5 was more efficient (Heo et al., 2012). In
addition, AuNPs represent an encouraging candidate for tumor
margin detection, improving the surgery resection of brain
cancers (Tzeng and Green, 2013). An in-vitro study on brain
tumor cell lines showed a strong amelioration in uptake studies
of targeted particles with respect to non-targeted formulations
(Dixit et al., 2015b). Recently, matrix metalloproteinase-2-
sensitive gold-gelatin nanoparticles were developed; RGD and
octarginine were used as targeting ligands to pass through the
BBB, allowing a pH-triggered release to the glioma-specific
area. Indeed, it has been reported that gold nanotheranostic
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TABLE 2 | Nanoparticles examples with some characteristics.

Nanoparticles Biosafety Size References

Gold

nanoparticles

Low cytotoxicity 2–60 nm Fan et al.,

2014

Magnetic

nanoparticles

Potential cytotoxicity 7–20 nm Alphandéry

et al., 2015

Quantum

dots

Potential cytotoxicity 2–50 nm Onoshima

et al., 2015

Carbon

nanotubes

Potential cytotoxicity 0.4–40 nm Wang et al.,

2012

Mesoporous

silica

nanoparticles

Low cytotoxicity 20–25 nm Wang et al., 2015

Different nanoparticles and the respective biosafety and size.

targeted specific tumor areas since it is able to co-localize within
neovessels (Ruan et al., 2015). Gold theranostic micelles coated
with polyethylene glycol-polycaprolactone (PEG-PCL) exhibited
radiosensitizing efficacy for GBM therapy and can be used
as a novel contrasting agent for both MRI and CT studies
(Sun et al., 2016).

MAGNETIC NANOPARTICLES

Recently, Magnetic Nanoparticles (MNPs) have been introduced
as potential nanocarriers in targeted drug delivery at the
tumor area, having the further benefit of MRI traceability
(Table 2). The magnetic response (iron oxide core) ameliorates
the magnetic targeted delivery (Pankhurst et al., 2003; Frimpong
and Hilt, 2010). Interestingly, it has been shown that intravenous
administration of these particles is able to reach the cancer
site in an animal model. Recently, Chertok et al. reported
that magnetic nanoparticles are a useful tool for magnetically
enhanced accumulation in brain tumors and for non-invasive
MRI screening. This accumulation can be sharply improved
with magnetic targeting, as confirmed by MRI (Chertok et al.,
2008). A recent in-vivo study suggested the potential clinical
application of these nanotheranostics since MNPs overpass the
BBB in a reversible way, and the substance can reach the targeted
site (Lammers et al., 2015; Tabatabaei et al., 2015). Since 2013,
NanoTherm R© therapy has been established as a new procedure
for the focal treatment of solid tumors (Rivera Gil et al., 2010).
In this procedure, magnetic nanoparticles are introduced in
the tumor or in the resection cavity wall. These particles are
then heated by an alternating magnetic field, determining cancer
cells death. Nanoparticles are particles of iron oxide, suspended
in water, with a diameter of about 15 nm. After the in vivo
engraftment, they agglomerate and remain the tissue to be
treated. An alternating magnetic field then induces the particles
to generate heat. Depending on the temperatures reached in
the tumor site or in individual remaining cancer cells in the
resection cavity wall, and the length of treatment, cancer cells are
destroyed or made more sensitive to concomitant radiotherapy
or chemotherapy1 (Alphandéry et al., 2015).

1NanoTherm R© therapy. Available online at: https://www.magforce.com/en/

home/our_therapy/

QUANTUM DOTS

Quantum Dots (QDs) are nanoscale (<10 nm) inorganic
semiconductor nanocrystals, which represent a potential
candidate for theranostic purposes (Table 2). They emit light
which wavelength can be tuned on the basis of their shape,
composition, and size. Cadmium selenide/Zinc sulfide-based
QDs are the most used nanomaterials for diagnostic purposes.
They have a CdSe core that is overcoated with layers of ZnS
(Zhang et al., 2017). Furthermore, to gain affinity and target
the cancer site, the surface of the QDs can be covalently or
non-covalently conjugated with targeting probes, such as
various antibodies, peptides, nucleic acids, folate aptamers,
and other small molecules. One of the most suitable methods
for conjugating targeting molecules on the surface of QDs is
represented by the technique of avidin-biotin cross-linking (Tian
et al., 2011; Onoshima et al., 2015). QDs can be conjugated with
cancer cell-specific ligands, including HER2 (Ahmed et al., 2017),
highly expressed in glioblastoma, CD44, proteins, antibodies,
folic acid, and so on. Interestingly, QDs can be combined into
paramagnetic liposomal designs containing RGD peptides and
utilized as a diagnostic tool in tumor angiogenesis using MRI
(Volkov, 2015). QDs in theranostic showed a clinical potential
limit, due to their potential toxicity in humans (Derfus et al.,
2004; Kirchner et al., 2005). To overcome this problem, further
investigation is necessary to design biocompatible, excretable,
surface-modified QDs (Onoshima et al., 2015).

CARBON NANOTUBES

Carbon Nanotubes (CNTs) are composed of different layers
of graphene sheets, which form a cylindrical shape (Table 2).
CNTs can be considered as allotropes of carbon with poor
biocompatibility and slow biodegradation (Singh et al., 2016).
CNTs are useful for theranostic applications since they can
ameliorate the effect of chemotherapeutic agents and are
translatable to clinical applications (Shapira et al., 2011; Singh
et al., 2016). Once CNTs reach the targeted cells, they can
interact with DNA and proteins, altering cellular signaling, or
the mechanism of other therapeutic approaches (Ren et al., 2012;
Chakrabarti et al., 2015). The intrinsic NIR light-absorption
characteristic of CNTs has been exploited to eliminate tumor
cells in vitro, whereas their NIR photoluminescence property
has been utilized in cell imaging. In an interesting study, it has
been reported that i.v. administration of single-walled carbon
nanotubes (SWCNTs) as photo luminescent probes is a valid
tool for in vivo tumor imaging, suggesting that SWCNTs could
be used for theranostic applications. Moreover, CNTs are able
to improve the chemotherapy effect in brain tumors (Robinson
et al., 2010). In fact, recently, gold-coated surface-modified
CNTs were established as optical nanotheranostic probes, which
exhibited high potential as imaging tracers but had poor clinical
potential due to slower biodegradation (and subsequent toxicity),
as shown in in vivo nanotheranostic studies (Wang et al.,
2012). However, CNTs may trigger adverse effects, such as lipid
peroxidation, that induce inflammation and cell damage (Shapira
et al., 2011; Singh et al., 2016).
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MESOPOROUS SILICA NANOPARTICLES

Mesoporous Silica Nanoparticles (MSNPs) are also emerging
drug delivery systems. MSNPs are thoroughly investigated and
used in diagnostics because of their tunable shape and size and
since their wide surface area facilitates a high drug loading
(Table 2). Numerous drugs, including paclitaxel, camptothecin,
methotrexate, colchicine, and cysteine, have been encapsulated
in MSNPs. These encapsulated anticancer drugs are able to
precisely cause the death of tumor cells (Gary-Bobo et al., 2012;
Mamaeva et al., 2013). Thanks to the hexagonal structure,MSNPs
can incorporate numerous functional components of an ideal
theranostic approach in a single object, with different regions
for the contrasting agent, therapeutic moiety, and biomolecular
ligand. In addition, MSNPs are identified as safe materials by the
FDA and are approved for evaluation in clinical studies. Scientists
have utilized silica to integrate both IONPs and QDs, in order
to create a hybrid with both optical and magnetic properties.
MSNPs are biocompatible and biodegradable materials for
nanotheranostic applications. MSNPs that dissolved silica can be
absorbed by the biological system, metabolize, and be excreted
through urine in the form of silicic acid or oligomeric silica
species (Chen et al., 2013; Wang et al., 2015). Biomolecular
targeting agents, proteins and peptides, are conjugated to the
surface ofMSNPs to ameliorate cancer treatment efficacy. Indeed,
the surface of MSNPs was conjugated with a Tf peptide to
enhance the detection of brain glioma cells (Cheng et al., 2010;
Feng et al., 2016). Due to their efficient drug-loading capability,
rugged nature, elevated biodegradation in the body, and diverse
functionalization, MSNPs are widely used as tracers in MRIs
or contrast agents in ultrasounds for accurate targeting, and
they show positive results for brain cancer detection (Feng
et al., 2016). In an interesting study, mesenchymal stem cells
were engineered with MSNPs to treat and diagnose orthotopic
glioblastomas. In particular, the intracerebral injection of
engineered stem cells significantly improved the survival of rats
with U87MG xenografts. This effect was concomitant with a
reduction in tumor growth and proliferation and microvascular
density. In GSC1 xenografts, intra-tumoral injections of Ad-
hMSCs depleted the tumor cell population and induced
migration of resident microglial cells (Pacioni et al., 2017).
Nanotheranostics therapy was administered systemically to the
mice and allowed in vivo imaging via MRI, NIR fluorescence, and
PET; moreover, it exhibited high specificity for the glioma site
(Huang et al., 2013).

NANOPARTICLES FOR GB TREATMENT

Numerous nanostructured delivery systems have been
established for brain tumor delivery, and, on the basis of
their composition and nature, they can be divided into organic
NPS and inorganic NPS (Kumar et al., 2016; Di Martino et al.,
2017). Organic NPS (i.e., liposomes, polymeric nanoparticles,
lipid nanoparticles, and micelles), compared with the “free”
drugs, were able to efficiently cross the BBB, with favored
distribution in the brain, in both in vitro and in vivo studies
(Danhier et al., 2015; Chen et al., 2016; Kuo and Cheng,

TABLE 3 | Examples of clinical trials performed using nanoparticles drugs for

gliomas.

Drugs Diseases Phase Clinical Trial

ABI-009

(nab-rapamycin)

Recurrent high-grade

glioma; Newly

diagnosed

glioblastoma

II NCT03463265

NL CPT-11

(Nanoliposomal

CPT-11)

Recurrent high-grade

glioma

I completed NCT00734682

Ferumoxytol Recurrent high-grade

glioma

I NCT00769093

9-ING-41 Glioblastoma II NCT03678883

Pegylated

Liposomal

Doxorubicine +

Temozolomide

Glioblastoma

And diffuse intristic

pontine glioma

II completed NCT00944801

SGT-53 Recurrent glioblastoma II NCT02340156

Myocet Refractory or relapsed

malignant glioma in

children/adolescent

I NCT02861222

Drugs, disease, and clinical trials with relative phase.

2016; Liu et al., 2016; Qu et al., 2016; Wu et al., 2016; Belhadj
et al., 2017; Chai et al., 2017; Graverini et al., 2018; Jhaveri
et al., 2018) (Table 3). The main advantages of inorganic NPS
(mesoporous silica nanoparticles, gold nanoparticles, iron
oxide nanoparticles, and quantum dots) are their resistance to
enzymatic degradation, robustness, and interesting intrinsic
characteristics (Nam et al., 2013). For the treatment of GB,
different kind of NPS (lipidic, magnetic, liposomal, fluorescent,
and polymeric) have already been designed in order to cross
the BBB, and these take into account active, passive, and
stimuli-targeting perspectives (Cheng et al., 2014; Saraiva et al.,
2016; Miranda et al., 2017; Aparicio-Blanco and Torres-Suárez,
2018). Theranostic nanoparticles represent a new technological
concept that provides a combination of inorganic and organic
nanoparticles to acquire synergistic characteristics in a single
nanoparticle, exploiting the drug delivery by organic NPS
and imaging by inorganic NPS. Theranostic nanoparticles
can be used to limit toxicity due to a high and invasive
dosage, improving patient outcomes. Recently, a combined
chemo-photothermal targeted treatment of gliomas within
one nanoparticle was developed. A targeting peptide was
synthesized and characterized. In particular, as a therapeutic
component, Doxorubicin was chosen, and, as a drug and
diagnostic delivery system, a modified mesoporous silica-coated
graphene nanosheet (GSPI) was chosen. The doxorubicin-loaded
GSPI-based system showed heat-stimulating, pH-responsive,
and sustained release properties. The in vitro results were
encouraging; glioma cells showed a higher rate of death and
strong GSPI accumulation (Lee et al., 2011). Targeting AuNPs
with two or more receptor-binding peptides for glioblastoma
treatment have been established (Dixit et al., 2015a). AuNPs
conjugated with peptides (EGF and transferrin) and loaded
with the photosensitizer phthalocyanine 4 (Pc 4) displayed
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synergistic effects in human glioma cells, concomitant with
a high accumulation in the brain tumor area compared to
AuNPs alone (Dixit et al., 2015a). Many in vitro studies
reported positive effects; however, in vivo investigations based
on theranostic NPS concepts are necessary to translate into
clinical practice (Schmieder et al., 2008; Jokerst and Gambhir,
2011; Sailor and Park, 2012). In vitro and in vitro studies
for GB treatment have been reported, and include gold
nanoparticles, curcumin-loaded RDP-liposomes, curcumin-
loaded PLGA-DSPE-PEG nanoparticles, chitosan-based
nanoparticles, iron oxide nanoparticles coated with a chitosan-
PEG-polyethyleneimine copolymer, hyaluronic acid conjugated
liposomes, and others (Dixit et al., 2015a,b; Orunoglu et al.,
2017; Zhao et al., 2018). Finally, magnetic nanoparticles and
Nanotherm theranostic technology have been successfully
applied in glioblastoma patients in 27 different European
countries with double median survival in 59 patients (reviewed
in Xie et al., 2018).

All these studies reported high efficiency against glioblastoma
also in in vivo investigations, thus indicating a promising
application in diagnosis and concomitantly in therapeutic
approaches, which results from significant accumulation in the
brain tumor regions. NPS are poorly investigated in clinical trials
(Andronescu and Grumezescu, 2017). The main limitation for
using nanotechnology to diagnose and treat cancer is due to
its inability to effectively contain and regulate the activity of
NPS inside the body, comprising toxicity, biodistribution, and
pharmacokinetics (Wicki et al., 2015; Bregoli et al., 2016; Hare
et al., 2017).

CONCLUSION AND PERSPECTIVES

In the last years, the field of “theranostic medicine” has
gained increasing interest in order to improve diagnostic
and therapeutic interventions by nanotechnology resources
that exploit a combined approach (Figure 1). A nanoparticle
should contain a therapeutic agent combined with a tracer to
help monitor the effect of the therapy as well. Theranostic
is considered a potential candidate for targeted therapy and
personalized medicine because you can follow the specific
behavior of each tumor concomitant with a substantial increase
in the efficacy of the anticancer drugs. This monitoring during
the treatment course is a non-invasive method that, through
the use of theranostic strategies, allows for the implementation
of the individualization of therapeutic regimens based on each
patient’s response.

Overall, on light of the published investigations,
nanotechnology research may be a potential and valid
treatment of CNS pathologies, especially brain cancers
(Figure 2), helping to address the main issues encountered:
unclear tumoral margins, neurotoxicity of adjuvant therapies,
fibrosis and immunological responses to intracranial devices,
vascular anastomosis, multidrug resistance, BBB blockage, and
tumor cell-specificity response to pharmacological treatments.
Nanotheranostics, indeed, have shown to be a valid option for
malignant brain cancers. Thus, in this review, we reported that

nanotheranostics may represent a solid approach to be adopted
in brain cancer management. The field of theranostics is pretty
new, but considerable efforts have been made in order to develop
theranostic nanoparticles for cancer therapy and targeted
imaging. Advantages of theranostic nanoparticles include
high biosafety, prolonged half-life into the circulatory system,
concomitant loading of therapeutic and contrast agents, small
size, high surface functionalization, and the ability to perform
concomitantly diagnosis/monitoring and therapeutic approaches
in real-time. Theranostic NPS allow a specific release of cargo in
the affected site, targeting overexpressed proteins and receptors
on brain cancer cells. These functions can facilitate the progress
of innovative drugs in both preclinical and clinical phases.

Recently, multifunctional applications and combined
approaches with personalized medicine applications have
increased the hope in a successful clinical translation. Currently,
as mentioned above, the only theranostic tool approved for use
in the clinical treatment of GBM in Europe is NanoTherm R© (Shi
et al., 2017).

Overall, the goal is that multifunctional nanomedicine is an
efficient, targeted in vivo drug delivery without systemic toxicity,
and the therapeutic efficacy and the dosage can be precisely
measured with low or absent invasivity.

However, in order to translate the experimental studies to
clinical trials, further investigations are necessary, particularly
to understand the low drug-loading capacity and to optimize
the drug concentrations that reach the targeted area, and
many factors need to be optimized simultaneously for the best
clinical outcome.

In vitro and in vivo studies optimized to correctly evaluate
toxicity, biodistribution, and pharmacokinetics of NPS are
strongly requested to test the safety and efficacy of these
nanomaterials in clinical studies. Moreover, the complexity
of some nanoparticle designs and the high production costs
contribute to the lower clinical uptake of NPS (Hare et al.,
2017). The major efforts in the field of NPS should be directed
toward bridging the gap between preclinical studies and the
clinical phase.

The goal would be a better outcome for the patients thanks
to the constant monitoring prior and during treatment, which
allows for personalized cancer planning with predictable side
effects. These multifunctional modern applications may increase
a patient’s life expectancy and life quality. It is highly probably
that, in the near future, the field of nanotheranostics will emerge
and become part of the conventional therapy and diagnostic
approaches for brain cancer and other type of cancers.
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