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Background

Excessive accumulation of reactive oxygen species (ROS) and unrestrained build-up

REP-Ca

of glycolysis-derived methlyglyoxal (MG) are thought to be

involved in the endothelial dysfunction that precedes diabetes-related vascular complications (1-9). On this basis, researchers are interested in finding
strategies to contrast oxidative stress (OS) and glycative stress (GS) by enhancing antioxidative and MG metabolism in high glucose (HG)-challenged
endothelium (10-12). Endothelial function in HG is improved by resveratrol (RSV), a natural phytoalexin (13-15), however whether RSV protects HG-

challenged endothelial cells mostly via its direct antioxidant effects or by modulating the

major antiglycative/antioxidative defence systems remains to

be demonstrated. Most importantly, it remains to be proved whether SIRT1, a NAD+-dependent deac(et)ylase critically involved in metabolic adaptation,
cell survival and response to cellular stress (16-17), is essential for RSV to protect the endothelial milieu from HG cytotoxicity.

Goals ————MMM  _ Materials & Methods

1) to provide detailed informations about the redox- and, most importantly, the MG-related
biomolecular mechanisms possibly underlying the protective effects of RSV in human

endothelial cells upon HG;
2) to establish whether SIRT1 is essential for RSV to protect human endothelial cells against

HG-dependent cytotoxicity;
to demonstrate whether SIRT1 is required for RSV to regulate ROS- and MG-targeting

enzymatic systems in human endothelial cells.

Results

RSV increases | EX527 decreases

Commercially-available human umbilical vein endothelial cells (HUVECs) were kept in 5.55
mM glucose (CTR) or 30.55 mM glucose (HG), and co-incubated with either RSV (5 uM) or
RSV+EX527 (SIRT1 inhibitor) (5 uM+13.4 pM), on the basis of concentration-response
curves. Cell viability was assessed by Trypan blue staining and phase contrast microscopy.
Apoptosis was assessed via Annexin V/Pl double staining and IncuCyte-based microscopy
imaging. Morphological assessment was performed by scanning electron microscopy (SEM).
Expression and function of SIRT1, SOD1, SOD2, CAT, and GLO1 were studied by
quantitative relative real time RT-PCR, Western blotting (WB), and spectrophotometric
enzymatic assays. Oxidative damage was evaluated by measuring TBARS, and the MG-

dependent protein damage was evaluated by anti-argpyrimidine-based WB.

SIRT1 expression with no cytotoxic effects SIRT1 activation is essential for RSV to elicit cytoprotective effects upon HG
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Same letters indicate no statistically significant difference (One-Way ANOVA); a vs b, P<0.01;

Same letters indicate no statistically significant difference (One-Way ANOVA); a vs b, P<0.05. b vs ¢, P<0.001; a vs c, P<0.01.
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avs c, P<0.001; b vs c, P<0.01.

Effects of RSV on SIRT1-SIRT3-mtSOD axis
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Conclusions

- HG-challenged HUVECSs show increased oxidative/glycative damage, and this is paralleled by ey o

impaired scavenging of ROS and MG;

* RSV rescues the HG-induced impairment of ROS and MG scavenging, as well as prevents the

pro-oxidant and pro-glycation effects triggered by HG;

* The up-regulation of SIRT1 is essential for RSV to protect HUVECs from HG cytotoxicity, and

to elicit antioxidant/antiglycative effects on HG-challenged HUVECS;

* The SIRT1-SIRT3-mtSOD axis may be suggested as a new pathway to enhance mitochondrial

biogenesis in the mechanisms of action of RSV.
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Same letters indicate no statistically significant difference (One-Way ANOVA); a vs b,
P<0.05; a vs ¢, P<0.001; b vs ¢, P<0.01.
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