A nanostructured Ag/Au adhesive film for H2O2 reagentless determination is here proposed. The film has been realised onto ELISA polystyrene microplates. Microwells surface has been initially modified with a gold nanoparticles (AuNPs)/polydopamine thin-film. The pristine AuNPs-decorated film was later functionalized with catechin (Au-CT) allowing a uniform formation of a plasmonic active nanostructured silver network in presence of Ag+. Changes in localized surface plasmon resonance (LSPR) of the silver network upon addition of H2O2 has been used as analytical signal, taking advantage of the etching phenomenon. The Ag/Au nanocomposite-film is characterized by a well-defined (LSPRmax = 405 ± 5 nm), reproducible (intraplate RSD ≤ 9.8%, n = 96; inter-plate RSD ≤ 11.4%, n = 480) and stable LSPR signal. The film's analytical features have been tested for H2O2 and glucose (bio)sensing. Satisfactory analytical performances were obtained both for H2O2 (linear range 1–200 μM, R2 = 0.9992, RSD ≤ 6.3%, LOD = 0.2 μM) and glucose (linear range 2–250 μM, R2 = 0.9998, RSD ≤ 8.9%, LOD = 0.4 μM). As proof of applicability, the determination of the two analytes in soft drinks has been carried out achieving good and reproducible recoveries (84–111%; RSD ≤ 9%). The developed nanostructured film overcomes analytical drawbacks associated with the use of colloidal dispersions in plasmonic assays carried out in solution; the low cost, robustness, ease of use and possibility of coupling enzymatic reactions appears very promising for (bio)sensors based on the detection of H2O2.

Plasmonic active film integrating gold/silver nanostructures for H2O2 readout

Scroccarello A.;Della Pelle F.
;
Dainese E.;Compagnone D.
2021-01-01

Abstract

A nanostructured Ag/Au adhesive film for H2O2 reagentless determination is here proposed. The film has been realised onto ELISA polystyrene microplates. Microwells surface has been initially modified with a gold nanoparticles (AuNPs)/polydopamine thin-film. The pristine AuNPs-decorated film was later functionalized with catechin (Au-CT) allowing a uniform formation of a plasmonic active nanostructured silver network in presence of Ag+. Changes in localized surface plasmon resonance (LSPR) of the silver network upon addition of H2O2 has been used as analytical signal, taking advantage of the etching phenomenon. The Ag/Au nanocomposite-film is characterized by a well-defined (LSPRmax = 405 ± 5 nm), reproducible (intraplate RSD ≤ 9.8%, n = 96; inter-plate RSD ≤ 11.4%, n = 480) and stable LSPR signal. The film's analytical features have been tested for H2O2 and glucose (bio)sensing. Satisfactory analytical performances were obtained both for H2O2 (linear range 1–200 μM, R2 = 0.9992, RSD ≤ 6.3%, LOD = 0.2 μM) and glucose (linear range 2–250 μM, R2 = 0.9998, RSD ≤ 8.9%, LOD = 0.4 μM). As proof of applicability, the determination of the two analytes in soft drinks has been carried out achieving good and reproducible recoveries (84–111%; RSD ≤ 9%). The developed nanostructured film overcomes analytical drawbacks associated with the use of colloidal dispersions in plasmonic assays carried out in solution; the low cost, robustness, ease of use and possibility of coupling enzymatic reactions appears very promising for (bio)sensors based on the detection of H2O2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11575/111049
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact